Journal of Magnetic Resonandd3, 243-254 (2000)
doi:10.1006/jmre.1999.1989, available online at http://www.idealibrary.co

HEAL®

Coherent Cross-Polarization Theory for a

Spin-3 Coupled to

a General Object

Pieter C. M. M. Magusihand Wiebren S. Veeman

Department of Physical Chemistry, University of Duisburg, 47048 Duisburg, Germany

Received November 18, 1998; revised November 12, 1999

Zero-order average-Hamiltonian theory is used to extend the
product-operator description of coherent spin—spin cross-polariza-
tion to the case of a spin-3 coupled to a general object, like a
molecular rotor or a quantum oscillator. The object, which is not
necessarily in a Boltzmann equilibrium state, is assumed to have
no interaction with the lattice and no internal relaxation capacity.
The Bloch-Wangsness—Redfield (BWR) theory for incoherent pro-
cesses like spin—lattice relaxation does not apply for such an
isolated spin—object pair. Nevertheless spectral density at the
Larmor frequency, of key importance in BWR theory, also plays a
central role in object-induced spin polarization. Spectral density in
our theory is represented by quantum operators J_ and J,. If J_
and J, do not commute, the spin—object coupling may cause spin
polarization in an initially saturated spin system. This represents
a coherent mechanism for spin cooling, which in specific cases may
lead to enhanced spin polarization above the thermal equilibrium
value. A master equation is derived for general spin—object cross-
polarization, and applied to the case of a spin pair inside a uniaxial
rotor, and a spin coupled to a microelectronic LC circuit. © 2000
Academic Press

Key Words: relaxation; rotation; oscillation; nuclear magnetic
resonance; coherent cross-polarization; spin-3.

INTRODUCTION

irradiation of the spin can lead to translational motion of the
particle, which is the basis of force-detected NMR spectros
copy @). A spin may also be coupled to the molecule ol
particle, in which it resides, through the orientation dependen
of the chemical shift, the quadrupolar interaction, or the dipole
coupling. In magnetic resonance it is commonly assumed th
nonspin objects, like quantum oscillators and molecular rotor
are intimately linked to the surroundings, so that their state
practically unaffected by the interaction with the spin. This
leads to incoherent spin—object processes, such as spin—lat
relaxation, which can be described in the theoretical frame
work of Bloch, Wangsness, and Redfieg] 10. As opposed
to the incoherence assumed in relaxation theories, in this artic
we study thecoherentinteraction between a spincoupled to
a general object. The object may, e.g., be another spin, a clus
of spins, or a specific lattice mode, which is only weakly
coupled to the other lattice modes. As a starting point we tre
the spin—object pair as isolated from its surroundings an
neglect the possible occurrence of internal object relaxatio
Furthermore we do not necessarily assume a Boltzmann st
for the object.

The main question we want to answer is whether types
spin—object coupling other than spin—spin coupling can b
used to enhance the spin polarization in a way similar to tr

The low equilibrium polarization of nuclear spins in a magspin-spin CP technique. From a semiclassical point of vie
netic field at ambient temperature has challenged numergtany types of spin—object interactions can be regarded

investigators to enhance the spin polarizatian €. A well-

contribute to the local magnetic field at the spin site. If thi

known and routinely applied technique in solid-state NMR igontribution has a transverse component and fluctuates in t
cross-polarization (CP), whereby polarization is transferregnge of the Larmor frequency, the spin—object coupling ca
between different nuclear spin speciés?). In general spins cause transitions between the spin states. The question
not only are coupled to other spins, but also interact with oth@hether these transitions lead to saturation or polarization. C
“objects.” An example of such coupling to a nonspin object ihe one hand electromagnetic radiation, for instance, equa
represented by a spin in a spatially inhomogeneous magnetffects the transition probability between the two spin states
field. In this case the spin is coupled to the source of th@th directions and thus results in saturation. On the oth
gradient, e.g., a magnetic particle, through the position depefand, if a spin system is in contact with a thermal bath &
dence of the Zeeman interaction. As a result of this couplingmperatureT, the spin state populations should reach value
given by the Boltzmann equation. Semiclassical relaxatio
1 To whom corre_spondence should be addresseq at present addrgss: _quéibry, in which the coupling with the lattice is represented b
Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Eind- . .
hoven University of Technology, P.O. Box 513 (STW 3.25), 5600 MB Eind€a/ functions, always leads to a steady state described by
infinite temperature9, 11). Such arguments, however, neglect
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2455054, the quantum character of the object coupled to the spin. Wan
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244 MAGUSIN AND VEEMAN

sness and Bloch have presented a theory for incoherent spin— du i

lattice interaction, which takes the quantum character of the qi = "z HTuU [5]
lattice into accountq). Their theory is based on the assump-

_tions that the Igttice has an infinite heaF capacity and a raﬁ’/lﬁth boundary conditionU(0) = 1. H*(t) is the coupling
internal relaxation, so that |.t is always in a Boltzmann stat@i, miltonian in the interaction frame,

Below we present a theoretical framework for coherent polar-
ization exchange in an isolated pair of a spiand a general

* — @i(H'+HO A 11,048 —i(H'+HO)t/i
quantum-mechanical object. H*(®) =e H"e

= —3hg(1,O* (e ' + | _O% ()" + 21,0%(1)),
[6]

GENERAL THEORY OF CROSS-POLARIZATION

(a) Average Spin—Object Hamiltonian in the Interaction
Frame wherel. = 1, = il,, I, =1, O%(t) = To(O, = i0,)T,%,
* — 1\ — g © ;
The HamiltoniarH of a spin3 coupled to an object, such asando‘?(t) .TOOZTO W'th.To exp{iH "t/7). Wg can split
. . . . the spin—object coupling into a secular part which commute
another spin or an oscillator, consists of a spin gt an

obiect bartd®. and an interaction paft'®: with the unperturbed Hamiltoniad' + H® and a nonsecular
ject p ' P ' part which is purely oscillatory in the interaction frame:

H:H|+HO+H|’O. 1 i(H'+HO —i(H'+HO
[ ] H*(t) — ngoc_*_ e|(H +H )thlﬁoonsece i(H'+H )t/ﬁ_ [7]

In a magnetic field the spin part is given by Solving the Schidinger equation is generally complicated by
the time dependence bf*(t). The situation may be compared
H'= —fiwgl [2]  to the specific case of spin—spin CP, wheré is represented
by the heteronuclear dipolar coupling Hamiltonian. For spin:
where w, denotes the Larmor frequency. The unperturbespin CP the time-dependent nonsecular pati®ft) is com-
object HamiltonianH® needs no further specification at thismonly neglected. We intend to use a similar effective-Hamil
stage, except that it is assumed to be time-independent. Theian approach for the general spin—object case. Without pri
termH"° denotes the coupling between the spin and the objdetowledge of the object Hamiltonidrd® and the object oper
and depends on the specific interaction involved. Since thtrsO, we cannot derive an expression for the secular Han
operatord . = 31, 1,, I,, andl, represent a complete basis ofltonian on the basis of their commutation properties. Howeve

spin3 space, the general form &f'° is we may do so by using average-Hamiltonian thedr®),(in
which the system evolves under an effective Hamiltonian give
H'O = —Ag(Oy + O,l, + 0,1 ), [3] by a series of terms
whereg is a real scalar reflecting the size of the coupling, to be H=H®+H®+... [8a]

defined more exactly below, and where the “coordinateg”
O,, andO, are operators in object space. Note that a possibith the zero-order term
termO,l . can always be included into the definitiontdf. The
principle of energy conservation requires the total spin—object 1 [t
Hamiltonian (Eg. [1]) to be time-independent (Appendix 1). H©(t) = f H* (t")dt’
Therefore, ifH' and H® are assumed to be stationaky,® t 0
should also be time-independent. Interactions, which are time-
dependent from a semiclassical perspective, can generally be
translated into a quantum-physical form without explicit time
dependence.

The polarization exchange between the spin and the object [8b]
can be derived from the density operapoin the interaction
frame,

(" , . ,
—H'O+ N QIHIHHOUIAIO o =i(HI+HOL Ay
0

and higher-order termsi®(t), which in the weak-coupling

limit tend to be much smallefH™ ()| < [[HO(t)||. Since the
p* (1) = U(t)p* (0)U (1), [4] nonsecular part ofi*(t) consists of purely oscillatory terms,

HO(t) converges intoH... on the timescale of the slowest
whereby the propagatdd(t) should satisfy the Schdinger oscillation. Depending on the rate of convergence relative |
equation in the interaction frame the size of the spin—object interaction we distinguish betwee
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a slow and a fast limit. For both limits it makes sense to use a TABLE 1
time-independent effective Hamiltonian of the form Product 1,1, of the Spin- Operators I,, I, € {2l., 2l,, 1., 1_}
Iy
g
Her= = (1.d_ + 1.3, + 216do). [9] 5 . 2. - N

- _ . 0

In the slow limit the oscillations iH*(t) are extremely slow 21, = ) 2, 2, I I
on the timescale of the spin—object interactiohi;(t) ~

H*(0). We maythen use an effective Hamiltoniah,; equalto 2o =

H*(0), and theoperators], (o = —, 0, +) in Eq. [9] corre

0) 2l, 2, Iy =

PO OO OFr OFFr
=
SN———

TN TN T T/

spond to the respectiv@, operators in Eq. [3]. In the fast limit '+ = 0 1+ —I 0 le + 1o
the nonsecular part ¢1*(t) averages to zero before significant 0) | | _— 0
effects of the spin—object interaction arise. Thiig is repre B 0 ) ) e

sented by the remaining secular pétt.. The operatorsl,
follow from the limiting behavior form of the average Hamil-
tonianH®(t). For timest beyond a certain minimum tirrtg;,,
say, one order of magnitude larger than the period of t
slowest oscillation irH*(t), H®(t) becomes independent of agi,
further increase ih. Replacing by the fixedt,,, in Eq. [8b] we
obtain a time-independent expression for #fjeoperators

supposed to be nonzero), and at the same time multiplying
J. Such normalization has the advantage tha¢flects the

e of the interaction in frequency units, which is conve
nient for checking the validity of the secular-Hamiltonian
approximation.

Specific commutator properties of ttle operators can be
o - derived from fact that the limiting forn... of H® commutes
Jo = t-f O (t)el it [10]  with H® + H'. Insertion of a secular Hamiltonian of the form of

™o Eq. [9] into the vanishing commutatadf + H', H.J yields

The operators], may be compared to the spectral density [HO 1,J_+ 1.3, + 21,3]
functions in relaxation theory. Between the slow and fast limit _ |
there is the intermediate range, in which the frequency of some = ~[HLLI- 41230+ 216do]. [11]

oscillations inH*(t) is comparable to the size of the spin— | _
object interaction. Then the effective-Hamiltonian descriptionP/Iting up the commutator term by term on the left-hand sid

is invalid, and other approaches based on, e.g., higher-or@&/th€ equation, and using Eq. [2] and the spin—operak

average-Hamiltonian theort2) or Floquet theory13) should commutation rules on the right-hand side, we then have

be employed. In addition we may encounter combined slow

and fast limiting cases, wheit*(t) contains both slow and fast LLIH® 3]+ 1[H® 3] + 21 [H®, Jo]

oscillating terms well separated in freque_ncy. In the derivation = gl I — hagl J.. [12]

below we will generally assume the fast limit, and employ the

secular Hamiltonian, or, equivalently, the zero-order average,m the orthogonal properties of the spin operators (Table 1

Hamiltonian (ZOAH) to calculate the behavior of the spins thus follows

object system beyond a certain minimum tig associated

with the initial transient behavior dfi®(t) (Eq. [8b]). Some [H° 3] = 0 [134]

. . 1 YO0

authors have pointed out that there is generally an upper bound

to the validity of average-Hamiltonian theory4, 15, as well. [HO J.] = Fhawgd-. [13b]

A full explanation thereof is beyond the scope of this article.

Assuming the first-order tertd ®(t) to be next in importance, Even without specifying the object involved, we thus know

however, we may expect that the zero-order propagatbat the operatord. act as raising and lowering operators

exp{—iH©t/#} starts to deviate significantly from the morewhich connect object states with energy separatiort bi,,.

accurate first-order propagator exp{(H® + H®M)t/A}, H.r (EQ. [9]) may be divided inttd 4, = —(hg/2)(1,J_ +

when |[H®|t > #. This yields a roughly estimated upped ,J_), on the one hand, and .z = —#gl.Jo, on the other.

boundt ., = #/|H®) for the validity of a ZOAH approach. H., directly affects the spin polarizatiofi,) by causing
The J, operators correspond to quantum operators such fag-flop transitions between the two spin states and pairs ¢

position, momentum, charge, and current and are generally obfect levels separated tiyv,,. By changing the magnetic field

dimensionless. They can be made dimensionless by dividing thBgnwe may matchiw, to the separation of specific object

by the expectation valug¢ =\V/{(J_J. + J.J_ + J}) att = 0 levels. Becausél .z commutes with ,, it only has a higher-
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order polarization effect, which, as shown in Appendix 3, evamith R® = dR,/dt and curly braces denoting an anticommu
vanishes completely, wheth; , andH ;g cOmmute. In typical tator {A, B} = AB + BA. Equation [17] shows howR(t),
cases, like the examples discussed in this papgr vanishes, Ry(t), R, (t), andR _(t) are coupled. Being most interested in
or commutes withH . . For this reason we negleld; s in the the spin polarizatiorl ), = Tr{R,(t)}, we may obtain a new
following and assume an effective Hamiltonian of the forrset of equations with less coupled variables by differentiatin
of Hgga. Egs. [17a] and [17b] once more, and replacing the resultir

first-order derivatives on the right-hand side by use of Eq:
(b) Product-Operator Description of Object-Induced Spin  [17c] and [17d]. Adding and subtracting the two resulting

(De)polarization second-order differential equations yield

In the previous section we showed that in the weak-coupling )
limit the spin—object system between certain time boungls RO(1) = g
) . t) = — 7 (J_J,Rs(t) — 2J_R,(1)J, + Ry(1)J_J
andt,., can be described by the zero-order average Hamilto - (® 4 (J-J,Rx(1) 2(0J. x(1)J-J.)
nian H®. The density operator can then be solved from an

effective Liouville—von Neumann equation: [182]
g2
dp i RP(1) = — 7 QR = 2J,Rs(J + Ra()J,.),
az —ﬁ[H(O), p(t)]. [14]

[18b]

Note that, although Eq. [14] cannot be used to calcudt® respectively, withRs(t) = {R.(t) + Ro(t)}/2 and R,(t) =
fort <t we may nevertheless use it for integration from  {R (t) — R,(t)}/2, and R?(t) and RY(t) the respective
0 in order to derivep(t) betweent,, and t.,. Since the second-order time derivatives. Although simpler, Eq. [18] i
operatord . = 31, |,, |,, andl, represent a complete basis o&till difficult to solve, becausdl, and J_ do not generally
spins spacep(t), like any operator in spin—object space, cagommute withRs(t) andR,(t). Fortunately, we do not need to
be expanded as know the exact solutionRx(t), R.(t)} in full detail to calcu

late {Io), = Tr{Ry(t)}. By subtracting Eqgs. [18a] and [18b]

p(t) = 21 R(t) + 21,Ro(t) + I ,R_(t) + | _R,(t), [15] and taking the trace we obtain

where R.(t), Ro(t), R.(t), and R_(t) are time-dependent d?Tr{Rq(t)}
operators in object space. Equation [15] implicitly defines the dt? = ~gFTr{J-JuRs() = J.J-Ra(B)},
object operatorR,(t) in such a manner that owing to the sgin-

properties (Table 1) the expectation value of any spin operator

I, equals the trace dR,(t) in object space:

[19]

where we used the property that the trace of an operat
product stays invariant under cyclic permutation, ABC} =
(I = Tr{R,(1)}. [16] Tr{BCA} = Tr{CAB}. Differentiating Eq. [19] twice with
respect to time followed by substitution of Egs. [18a] and [18b
Because we wish to calculate the spin polarizafily);, our and cyclic permutation of the operators within the trace on
aim is to deriveR,(t) as a function of time. Substituting Eq.finds for the even-order derivatives
[15] andH® = —(Ag/2) (1.3 + 1_J,) into Eq. [14], and
taking the product properties of the spin operators (Table 1)d2"Tr{R0(t)} _
and their orthogonality into account, we find BT (ig) > Tr{(3_J,) *Rs(t)
g ~ (3.3) Ry},
RJM =7, [0, RO+ [, R.D]) [172] 20]

RW(t) = ig (—{3., R_(t)} + {J_, R.(1)}) [17pb] The uneven-order derivatives may be obtained by differentia
4 ing one step further,
ig

ROM =5 (3., R(O]+ {3, R} [27¢] A2 Tr{Ry(1)}
RO = ([0, R(O]~ 13, RV} [17d] - QIIRYON 1]

= (19)*Tr{(3-3)'RY(V)
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If, by assumption, there is no spin coherenceat0, (I .), = (I = 3(cog gt \J_J.) + cog gt J.J ))o(lo)o. [24C]
0, then the initial density operator has the foph(0) =

21 R4(0) + 21,R,(0), and the uneven-order derivativest at . . .
0, RZ"V(0), vanish. Substituting the even-order derivativeghe suffix 0 means that the expectation values of the time

into a Taylor expansion ofl o), = Tr{R,(t)} then yields the dependent cosine operators and the spin operators are to

difference between two cosine series: evaluated with respect to the density operatf0) att = 0.
The polarization terndl o) is the spin polarization component

_ P induced by the object in the case of an initially saturated spi
TrRy()} = Tr{cos gtyJ-J)Rs(0) system. The depolarization ter¢hy) ™ shows what happensIo
— cog gt 3,3 )R,(0)}. [22] tothe initial spin polarization under the influence of the object
{1,y is nonzero only ifJ, andJ_ do not commute. Object-
Rs4(0) in Eq. [22] may be resubstituted bR{(0) = R,(0)}/2. induced spin polarization thus requires the object to hav
The operators cosgft\V/J_J,) and cosgtVJ.J_) have pure significant quantum character. In the classical lidnitandJ -
object character. Now, for any pure object operdfoit fol- become identical to their expectation valdds) = j.. Then
lows from the general form of the spin—object density operatdr,){* vanishes, andl ,){** equals cosgtVj.j ). Due to the
(Eq. [15]) and the orthogonality of the spjreperators (Table normalization = V{(J J. + J,J ) = 1, this further reduces
1) that THQR,(0)} and T{QR,(0)} respectively correspond to to cos(gt/\/2). As noticed above)_ andJ, are raising and
the expectation values.Q), = 3(Q), and(l,Q), att = 0. lowering operators, which connect object states separated
To evaluate such an expectation vakigQ), further, we energy byfw,. If we assume a nondegenerate set of objec
assume that the initial density operaj@i(0) is the product energy levels, the matrix representatiorded - andJ_J . with
pop; Of an object operatop, and a spin operatop,. In respect to the object states is diagonal. Evaluating the expe
the weak-coupling limit this is approximately the casdation values of the cosine operators in Eq. [24] then involve
when beforet = 0 the spin and the object are in thermathe diagonal elements of the initial object density matrix only
equilibrium, p*(0) = exp{—B(H' + H®° + H'9} = Any off-diagonal elements, reflecting coherences between no
exp{— BH'texp{ — BH®}. For suchp*(0) = pop, the expecta degenerate object states, are irrelevant for the object-induc
tion value(l ,Q), equals the product of the separate expectati@pin polarization. Moreover, not all diagonal elements nece:
values(l ,)o{Q),. Note that this represents an incoherent state sdirily play a role. Careful analysis shows that only the diagon:
the spin—object system at= 0 only. Att = 0 we perturb the elements associated with the object states separatédvhy
system, e.g., invert the spin polarization, and the coherertd coupled by the spin—object interaction determine the spil
effect of the spin—object interaction may well be th&ft) can object polarization process.
no longer be factorized into an object and a spin part. Conse-
quently the equalityl,0), = (I,)(O), does not generally (c) Object in a Boltzmann State

hold fort > 0. This is a marked difference from incoherent ) L i
relaxation theories, in whickO), typically represents some e now specify Eq. [24] for the case of an object initially in

lattice variable behaving independently from the spin. Makiﬁ&ermal equilibrium with its surroundings. This will generally
the substitutions in Eq. [22] be the state of an object left alone sufficiently long befor

establishing the coupling with the spintat= 0. The expec-
tation value of cos§t\vJ J,) with respect to a Boltzmann

Tr{Ro(D} = {lo [232] operator,po = N exp(—BH®) with N = 1/Tr{exp(— BH°)}
Tr{cog gt\J_J.,)Rs(0)} andB = 1/kT, may be derived from the cosine Taylor series
= (cog gt\J_J))o({leo + (l0)0)/2 [23b]
N *® | t 2k
Tr{cog gt J,J_)R,(0)} (cos(gt\J_J,))=1+N ( gk)l Tr{(J_J.) e P},
N k=1 ’
= (cog gt I3 ))o((lebo = (l)o)/ 2 [23c]
[25]
with (I,) = %, we find that the spin polarization may be
decomposed into two terms, Changing the product order of the operators within the trace al
multiplying from the right withl = exp(8H®)exp(— BH°),

Iy = (1 PO + (1 ) dero! [24a] we obtain for the separate terms

with TrH(J J,) ke PR = Tr{(J,J ) 13, e #°) efHi% 8%

(Io)P*' = §(cog gt J_J.) — cog(gt I, I ), [24b] [26]
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in which we recognize the imaginary rotation 1, between Eq. [32a] and the corresponding equation for e
ponential spin—lattice relaxation:
e PR _ePH® = g g Pheo [27]
(I =(Io)T+ ({Io)o — (o) NeXp(—t/Ty). [32c]
as follows from the commutation propertf, J_] = #iwyJ .

Substitution of Eg. [27] into Eq. [26] yields Apparently, in coherent spin—object processes the functic

f(gt) has the role which the exponential decay has in spin
Tr{(3_J,) e P = Tr{(J.J)%e P""le P [28] Iattice relaxation. In Appendix 3 we show tHgit) is gener-
ally multiperiodic with values between1 and 1 depending on

Reinserting this into Eq. [25], we obtain the number and occupation of the object eigenstates involvi
in the spin—object cross-polarization. For multilevel system
(cog gt\/JAh))o = 1 — g Bhoo one may typically expect a damped oscillatory decaf( gt)

toward some final stationary value.
+ e Preu(cog gty J,J))  [29]

. . . L SPECIFIC EXAMPLES
which may be substituted into Egs. [24b] and [24c], yielding

(a) I Spin Coupled to an S Spin

ol _ 1 _ @ Bhoo _ 3.3
(loP”=2(1-e ){1 = codgtJ.J-)) [30a] To check the consistency of the general CP equation (E

(18P0 = 1(1 — g Bhoor | (1 4 @~ Bhoo [24]) with secular Hamiltonian theory for spin—spin CP we
‘ consider the case where the object is another spin S. In t
X cog gt\f/\]+\]7)>o<| oo [30b] basic spin—spin CP experiment resonant, linearly polarized F

fields are simultaneously applied to both spins | and S. As
To interpret Eq. [30] let us introduce the following parameter§imple example, also treated in the paper by Hartmann a
Hahn (7), we consider a heteronuclear pair of spihand S
with scalar couplingll S, only. We assume perfect Hartmann—
[31a] Hahn matching and neglect off-resonance effects. The secu
Hamiltonian in the tilted interaction frame ig)(

;11— e P
(o7 =2 11 g

1+ e Fhoo

No =" [31b]

hd
Hsec: _T (I+S* + I*S+)' [33]

with (1) " the equilibrium spin polarization at the initial object
temperaturel, and N, a temperature-dependent number i . . .
versely proportional to the occupation of the lowest spin St;gomparmg Eq. [33] with Eq. [9], we see that the spin operator

. ) .~ 7SI in the first equation correspond th.. The normalization
e Ky emperalre I ondion i o lfled, becausa S. S5~ 25, -1
para T 9. ' q flnable 1). We characterize the initial spin-locked state of the

for the total spin polarization (Eq. [24a]) assumes a mo

s%in by a spin temperatui® and replacél )" in Eq. [32a] by

familiar form, the initial S spin polarizatiokS,),. The calculation of(gt) in
. Eq. [32Db] is facilitated by the simple matrix representation o
(I = Ng(l) " + (1 = Np)(lo)o the operatod,J_ = S,S_:
+ Ng({lo)o — (1)) f(gt) [32a]
10
with SiS- = (0 0) [34]
f(gt) = (coggt\J.J-))o. [32b] (Table 1). The cosine operator in Eq. [32b] may thus b

rewritten as
Thus, if the spin and object temperature are the samhe=af,
the polarization flow from the object to the spin balances the
flow in the opposite direction, and the spin polarization stays
constant. This is similar to what one would expect for inco-
herent processes on the basis of thermodynamics. Indeed, thésimg(S.S_), = (exp(—Bhwy) + 1) " = (2N,;) * and some
is a close similarity in the high-temperature limit, whidp ~ goniometrics we then obtain from Eq. [32a]

cog3Jt,/S,S ) =1+ S.S cogidt) — S, S. [35]
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(o) = (Se)oCOLE It) + (I o)osin?(2 J) [36] Quantum mechanically the factors edkpp) in Eq. [37a] act
as raising and lowering operators

which is fully consistent with spin—spin CP theor) (

Re= e = 3 [n+ kxn| [39]

n=0

(b) Spin3 Pair Coupled to Rotational Motion

As a second example we discuss the case of a coupled spin
pair inside a uniaxial rotor. The COUp”ng between the rotor al’aﬁ] the eigenstatds> = exp(in(b) of the unperturbed uniaxial-
the spin pair results from the orientation dependence of th&or Hamiltonian,
dipolar interaction. In magic-angle-spinning (MAS) experi-
ments rotational resonance occurs between coupled nuclei B2 52
whose Larmor-frequency difference equals the rotation rate or Ho'= — — — [40]
multiples thereof16). Because the Zeeman splitting of the two 21 3¢
spins are not exactly equal, it may seem that energy is not
conserved in such process. To restore the energy balaWééh | the moment of intertia of the rotor. The correspondlnc
energy must be borrowed from, or lent to, the MAS rotor. Th@nergy levels of the free uniaxial rotor dg = #Bn?, with B
offset of the Hartmann—Hahn condition for dinuclear CP ithe rotational constamt/2I. For simplicity we do not take
MAS experiments by a mu|t|p|e of the Spinning rate as ConﬁOtOI' driving and friction into account, so that the discussiol
pared to the Stationary Conditiomm is caused by a Compara_strictiy applies to free rotors with negllglble friction at the
ble mechanism. These rotor-induced effects on spin pairs dpaescale of the dipolar interaction. A driving force may have
usually described in a semiclassical way by treating the rotor@en employed to prepare the rotor in a specific initial state, b
a macroscopic object. The purpose of the discussion belowitishould be switched off a = 0. Upon transformation into
to present these effects as a specific case of spin—object cr(ﬂ%%f otor—spin-pair interaction frame the opera®s= €'’ in
polarization between a fictitious spjrand a quantum rotor. H° (Eq. [37a]) become

For a spin pair | and S inside a uniaxial rotor it is convenient
to specify the orientation of the dipolar tensor by the Euler R%(t) = el Vhgikdg-iH ™A
anglesQ) = («, B, v) in a coordinate system fixed to the rotor
and the Euler angleQ” = (¢, 6, ¢) of this rotor-fixed frame in co ,
the laboratory frame. Truncating the dipolar Hamiltonian after 2, €PN + ky(n. [41]
the secular and the flip-flop term we may express the depen- n=o
dence of the dipolar interaction on the rotation angjlas (L2)

Combining Egs. [38] and [41] we may derive the zero-orde
average HamiltoniarH® for rotor—spin-pair cross-polariza

2 . . g
brev . tion. Whenw,; matches the separation between two specifi
HE() = fwp g}z Crexplikd) T o, [37a]  otor levelsE, andE, (q — p = 1, 2),H” converges toward
where wp = fipoy,yd4mr?; ¢, are specific complex factors H® = —fiwp{cy plaXpll 2 + ¢, o|p)(a1 2}, [42]

depending ony, 8, and# (|c, | < 1); and
where we left out thé,S, term, and assumed,, > w,s. There
Too=1.S—%(1,S +1.S,). [37b] can maximally be a single pair of rotor levels which satisfie
the matching conditiom,; = E, — E,. Equation [42] repre
sents a Hamiltonian of the type as in Eq. [9], ahd J , and
|n Eq. [9] can respectively be identified gs(q|, |q><p| and
wpCpq With Cpy = VC,_4Cq_p. Calculating the expectation

Upon transformation into the so-called doubly rotating fram
(spin-pair interaction frame) the operatdg, becomes time- 1

dependent, vaIues of the corresponding cosine operators in Eq. [24] is ea
, _ due to the simple matrix representationJofl - andJ J, with
So(t) = 10Sp — 3 (1 %712 + | Zelend), [38]  only a single nonvanishing diagonal elemehtJ ),, = 1 and
(J-J.)q = 1. For example, ford_J, = |g)(g| we obtain,
with 12 = | .S. fictitious spin3 operators {8) andw,; = w,, —  Similarly to Eq. [35],

wes the Larmor-frequency difference. Becaug8, commutes
with 1%, 1,, and S,, it has no effect on the longitudinal 1 Tn7al) — 1
= o ' C0Y5 WpCpt +/ =1+ CcoY5 wpCphyt) —
polarization of the two spinél,) and(S,), and may be ne Lz oot ylaXal) la)(alcosts woCpdt) — aXal
glected (Appendix 2). [43]
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and an analogous equation fpp({p|. Inserting Eq. [43] and its with large quantum numbers ~ lw,/A and energy levels

analogue forp) into Eq. [24] yields almost equally interspaced BB(2n + 1) =~ Aw,. Hereby we
neglect energy differences in the order7d with respect to
(123P9 = 111 — cos2 wpCot) H Pocdo [44a] ho,. Within the subspac8 of occupied rotor states the raising

and lowering rotor operatoiR’(t) are approximately given by
(18§29 = {1 = (Ope)o + (OpgdoCOLE woCogt) K1 £ [44b]  (EC- [41])

with the rotor operator®,, andP,, defined as Rt = e " X |n+ kxn| = e*e", [46]
Inyes

— 1 )
Opq = 2 (|a){al + [PXPD) [454] whereby we assume the propertiegbf outside subspac®to
P., = 2 (la)(al — [p)(p)). [45b] b_e negligible for the be_hawor of the macroscopic rotor. T_h|:
time-dependent behavior of the rotor raising and lowerini

. operators may be compared to the operators in the theory
The expectation values dD,, and Py, reflect the average Boenderet al. (19). Insertion of Eq. [46] into Eq. [44] for

occupation and the polarization of the pair of rotor staggs 25 _ ko, yields a periodic Hamiltonian with frequenay,

an_d |9>' In t?'sgreszﬁopEandthq rr;jy S)e chr)npared to FneOmitting the uninteresting,S, term we obtain, e.g., fdk = 1
spins operatord . andl,. Equation [44] describes an osct e average Hamiltonian

tory polarization transfer back and forth between the rotor and
the spin pair. In the specific case wheh and|qg) are the only . .
occupied rotor statesO,,) equals3, and the polarization H® = —Zwp{c,e1?® + c_,e 1 %%, [47]
exchange is similar to spin—spin cross-polarization (Eq. [36]).
In general, however, other rotor states are occupied, as W@llhen the size of the dipolar interaction is small compared t
which reduces the amplitude of the OSCillatOI'y pOlarizatiOﬂhe frequency of the rotor{pD < ;, the zero-order average
exchange. Ifp) and|q) are not occupied at all, there is neitheHamiltonian can be used to calculate the spin polarizatiol
a polarization transfer from the rotor to the spin, nor vice versgrictly this represents a case of a combined fast and slow lim
The zero-quantum polarizatid;’) then stays constant. because, on the one hand, we neglect the Hamiltonian tert
Equation [44] describes the development of zero-quantiggcillating with frequencyw, > w,, and, the other hand, we
polarization under a zero-order average Hamiltortitifi de-  treat the remaining terms oscillating with frequencied/I <
scribed by Eq. [42]. However, an important criterion for the, = as stationary. For intermediate MAS rates & o), or
validity of the ZOAH approach is the timescale on whid’  “sybmacroscopic” rotors#(l ~ w), the evolution of the
approaches its limiting form. In this respect we made a digystem can no longer be described with an effective Hamilt
tinction between a fast and a slow limit depending on the rgtgan of the form of Eq. [47], and a more refined method, fo
of convergence relative to the size of the spin—object couplifigstance, based on Floquet theory must be us8d Compar-
(Ed. [9]). In the fast limit a ZOAH approach can be used, anglg Eq. [47] with Eq. [9] one sees that the operater¥’ for
in the slow limit we may treat the Hamiltonian in the interaCSpin_rotor Coup”ng Correspond to the Operatd[:s for the
tion frame as stationary. To determine when the fast limifeneral spin—object case. Thus we may indert= e into
applies for rotor-spin-pair cross-polarization, and when tfgy. [24] to derive the polarizatioti 2) as a function of time.
slow limit applies, let us, e.g., consider the case in whigBecause the operatoe’ ande '* commute, the polarization

specific neighboring rotor levels €, E,.,) differ by the term (12 vanishes and only initial depolarization occurs:
required amountw,;. Then, the separation of adjacent pairs

(E,-1, Ep) and €, 1, E,.») equalsi(w,s — /1) andzi(w,s +

ﬁ/lp), resppectiveI)p/. This determines the timescalg, ~ /%, (18! = cod3 wpCpat){I §)o- (48]

on which the average Hamiltonian converges into its limiting

form. Thus, only a microscopic or molecular rotor can satisfgincel;* = |, + S, commutes withH® (Eq. [47]), the total

the fast limit conditioni/l > wp|c, |, if one assumes the spin polarization(l;") = (1) + (S) is conserved. Combined

latter to be in the order of £0Hz or larger. For macroscopic with the oscillatory character @f3%) = (1) — (S,) this results

rotors, like MAS rotors, the convergence tends to be extrematy a periodic polarization exchange between spins | and

slow, 7/l < wp|c, 4|, and the slow limit applies. whereby the rotor supplies or absorbs the required energ
In the microscopic regime the average Hamiltonian quickBecause spinning rates of macroscopic rotors typically are

converges into the limiting form described by Eq. [42], whicthe range 18-10° Hz, rotary resonance will usually be a

leads to the above-derived polarization exchange accordinghtamonuclear process between like spins. Molecules may rote

Eq. [44]. A macroscopic rotor spinning at a rateis charae much faster and thereby cause rotary resonance within a h

terized by a narrow probability distribution over eigenstam@s eronuclear pair of dipolarly coupled spins. For such cases tl
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two-level description may be valid and equations like Egs.g
[44a] and [44b] can be used to calculate the polarizatiol
exchange.

(c) Spin3 Coupled to a Harmonic Oscillator

We now turn to the case of a one-dimensional oscillat
coupled to a spig-in a strong magnetic field. As fanechan-
ical oscillation this may, e.g., be a spin mounted on an oscil
lating device in a magnetic field gradient. One may furthef
think of a spin in a molecule coupled to torsional vibrations
through the anisotropic chemical shift or dipolar interaction FIG. 1. Sketch of the microelectronic NMR imaging setup discussed ir
with other spins in the molecule. The oscillator may also be tife body of text as a potential application of oscillator—spin cross-polarizatio
an electronicnature. For example, anC circuit can be cou-
pled to a spin through the magnetic field raised by the coil. A

familiar example is the detection circuit of a NMR probe".’1 material surface with the coil axis perpendicular to th

Tuned to the spins inside the detection cail, the circuit and tﬁgrface and the external magnetic field (Fig. 1). Combined wi

spins can exchange heat. In principle, this could lead to aﬁncall_pamtorfthe coil forr?tsha regon?nLC|r<LU|t, Whécr_:_;]s tunedllt
enhanced spin polarization in cryogenic NMR probe heads, ¢ -armorirequency ot tne spins to be observed. The Coupi

which the electronic parts are cooled to liquid helium tempeP—etween the oscillator and a spin located on the coll axis

ature. However, the heat exchange between alsaire such caused by the magnetic fieR8] produced by the coil, which, in

macroscopic circuit would be slow, as compared to the Iong}Hm’ is proportional to the currentn the oscillator. This gives

tudinal spin relaxation. The question addressed in this sect i to a spin—oscillator coupling Hamiltonian of the form
is whether specific microscopic electronic devices presently
available through microelectronic technology can be used to
cool the spins at the timescale of seconds, at least in theory. In o ) )
principle, the spin—oscillator system may be regarded asVjere G = v,dB./di is determined by parameters like the
special case of Feynman’s theory for a general system coupfdt@P€ and diameter of the coil, and the distance of the sy
to a harmonic oscillator20). Shirley’s discussion of an atom from the coil center. After substituting the operatbrsandA .
interacting with a quantized field (as a physical interpretatidit® Ed. [51] we use the commutator properﬂeH;',[Ii]_ =
of Floguet theory) is also relate@1). The purpose of discuss- *#@al - and H%, A.] = *hwoA. to transformH'** into
ing the spin—oscillator case below is simply to illustrate the spin—oscillator mter_actlon frame. If the oscillator fre-
application of the above-derived general equations (Egs. [Z#]eNcy matches the spin Larmor frequen@gs = wy, we
and [32]) to some specific nonfamiliar case in NMR spectro8btain @ monoperiodic Hamiltonian*(t) with frequency 2,

H'OS = —4Gil,, [51]

copy. and time-independent palt..
The unperturbed Hamiltonian of a one-dimensional har-
monic oscillator is 22 i how
2 Hmz_zﬁe/lf%AJ+—AJJ. [52]
2
HOS=1hwos(ALA_+A_A,), [49]

Comparison with Eqg. [9] combined with the normalization
with A, and A_ the raising and lowering operators, respec\/(J_J, + J.J_) = 1 and the requirement of a real-valugd
tively, acting on the oscillator eigenstate$ with energyE, = shows thatl. corresponds t6riViweyd 2(H® A andg to
(n + 3)fiw. For example, for an electronic circuit consistingsi,/(2 — V2) with i, = V2(H®S)/L. In the macroscopic
of an inductorL coil and a capacitoC with resonance fre- limit i, corresponds to the current amplitude, as follows fron
quency w,s = 1/\VLC the operatorsA. are related to the the classical equation for the oscillator enefgy= 1Li2, and
capacitor chargg and the coil current as @3) g = Gi,/V2 to the effective size of the spin—oscillator cou

pling (rad/s). Since the nonsecular termsHf(t) oscillate

1L with frequency 2,,, the validity of the zero-order Hamiltonian
A, = 2 (wod T i) [50] approach requireg < 2wy,.
hwos To calculate the effect of an oscillator in a Boltzmann stat
on the spin polarization we replack J_ in Eq. [32b] by
(with the voltage operatar in the paper referred to replaced by; wod/(H°)A_A .. This, in turn, may be rewritten by use of
the charge operatay = Cu in ours). Eq. [49] and the commutatorAl, A.] = 1 as H®® +
Let us consider a microscopic NMR detection coil close %% wosl)/ 2(H). In the high-temperature limif,wos < (H®%)
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FIG. 2. Relative polarization of a spificoupled to a harmonic oscillator
as a function of contact time, when there is no spin polarizatidn=at0 and

MAGUSIN AND VEEMAN

compared to incoherent spin—lattice relaxation. As for achie
ing the highest possible polarization enhancement there are t
opposite effects of the initial oscillator temperature on spi
polarization. On the one hand, one should cool down th
oscillator to a temperature as low as possible for the highe
final polarization level. On the other hand, cooling down the
oscillator also reduces its thermal-current amplitugleand

thereby the polarization transfer ragé\V/2 = 1 Gi,. In prac

tice there will always be some spin-lattice relaxation, whicl

the oscillator starts from a thermal-equilibrium state characterized by a tewill counteract spin cooling below the lattice temperature

peraturerT.

Because the oscillator energy in thermal equilibrium at a give
temperaturel equalsiLii = kT, decreasing the coil induc
tancelL speeds up the polarization process.

= kT, the operatoghwosl can be neglected with respect to  As an example, let us discuss the possible use of a micr

H®%. Setting(l,), = 0 in Eq. [32] yields for the oscillator-
induced polarizatiorl ,)f* of an initially saturated spin

(19)P"= Ngllo) T = Ng(l o) "f(gD)

~ (1 _ gt s
~<|0><1 cos(\/m\H )>

0

(53]

where we used the high-temperature approximatign =
{exp(—Bhrwes) + 1}/2 =~ 1. This can be expanded as

0

<|O>FOI = _<|0>T E

n=1

(igt/ 2)>

ani(posn (H) Do [54]

For fiwos < KT, the expectation valueg(H%9)", =
Tr{(H®®)"exp(— BH**)}/Tr{exp( —BH®®)} can be approxi
mately calculated from continuous integrals, yielding

(H%)Mo = (H3 Jm x"e "dx

0

0

= 2(H°9} J y?e Yydy [55]

0

with x andy as convenient integration variables relatedkby
y®. Resubstituting this into Eq. [54], we obtain

(U= (1)1~ ZJ coq gty/ V’E)e_yzyd Yo
0

[56]

scopic NMR probe to enhance the polarizatior’#f nuclei at
the surface of specific materials (Fig. 1). As the detection co
we take the microscopic pickup loop of a fully integratec
magnetometer recently developed by Kirtletyal. (24). The
pickup loop is an octagon 1@m across with a 1.2sm line-
width. Integrated with a 2@m-long section of coplanar lead
structure the system has an inductahce- 100 pH. We add

a capacitanc€ = 10 nF to change the loop system into ar
electronic oscillator with resonance frequenay/ 27
(27mVLC) ™t = 159 MHz. This corresponds to the Larmor
frequency of'P nuclei in a magnetic field of 9.3 T. In thermal
equilibrium the energy stored in our 159-MHz oscillator is
iLi5 = KT. For example, at 10 K the amplitudg of the
thermal current thus equals 1uA.

The coupling between the oscillator and a spin in the surfac
is represented by the magnetic field produced by the co
According to classical electromagnetic theoBp); the mag-
netic field along the coil axis caused by a currer

r2

B, = Momi, [57]

wherer denotes the radius of the cod,denotes the distance
from the coil center, and the finite wire thickness of the loop i
neglected. For a loop—surface distance equal to the loop rad
the coupling gradienG = v,dB./di = y,u,/rV8. Withr =
5pum, i, = 1.7 uA at 10 K, andy, = 10.8 x 10’ rad/Ts for,
e.g., P, the polarization transfer rag/\/2 = 1Gi, thus
equals 2r X 1.3 rad/s. This value is much smaller than the
Larmor frequency, which justifies the use of only the stationar
part of H*(t) (Eq. [52]) over a large time interval. Thus, when
the electronic oscillator at 10 K is brought into contact with ¢
saturated”P nucleus at a distance ofggn, the spin will cool

Thus(l ,)* can be calculated as the cosine Fourier transform d@bwn to this temperature in a few seconds. Theoretically the

y exp(—y®) (Fig. 2). Starting from 0 att 0, it has a

is even a transient polarization overshoot corresponding to

maximum of 130% aGi,t = 6 (determined graphically) and spin temperature of 7.8 K at = 0.7 s. This polarization
finally approaches the end level, where the spin temperatmaximum equals the room temperatdt® polarization at a
equals the initial oscillator temperature. This behavior may thypothetical field of ca. 360 T.
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CONCLUSION d i

4=~ 7 [HW, pO]. (2]
Using a zero-order average-Hamiltonian approach we have

given a product-operator description of the effect which a .. . .

general object has on the polarization of the spin to which it llgsertmn into Eq. [Al] yields

coupled. The spectral density operatdrsandJ . reflecting the dH )

fluctuations of the coupllng Hamiltonian in the mteraqtlon Tl’{p(t) d} _ %Tr{H 2(t)p(t)}

frame at the Larmor or nutation frequency play a key role in the t

polarization transfer. An increase of the spin polarization may i

only occur ifJ_ andJ, do not commute. Object-induced “spin + 7 Tr{H(t)p(t) H(t)} = 0. [A3]

cooling” is therefore a typical quantum effect. The more pro-

nounced the quantum character of the object, the higher the

resulting spin polarization or the faster the polarization prd-N€ race of an opera_tor product is invariant under a cycli
cess. In the classical limit_ andJ, reduce to their respective Pe'mutation TrBC} = Tr{ CAB}. It thus follows that the

expectation values, which yields (initial) depolarization. Spin@St two terms on the right-hand side of Eq. [A3] cancel eac
object cross-polarization critically depends on the occupati@her- Consequently we have

of the object levels concerned. Generalizing the outcome for

the example of a molecular rotor coupled to a spin pair, we <dj> _T t dj -0
conclude that pairs of object levels, even those with the re- de/ = ' PV dtf
quired energy separatidin, and connected by the spin—object

interaction, do not contribute to spin polarization or depolaEquation [A4] only proves that the expectation vafoki/dt)
ization unless they are occupied. This may be compared Withnishes, not the operatdH/dt itself. However, the principle
BWR theory, which states that spin—lattice relaxation requirg$ energy conservation is valid irrespective of the state of th
spectral density at the Larmor frequency. Spin cooling requirgsin—object system, and thus for all possible density operatc
the object-level pairs to be polarized, i.e., unequally populates{t). This can only be satisfied fiH/dt itself equals zero.

The general CP theory presented in this article is derived for @@nsequently energy conservation requiiet be time inde-
isolated pair of a spin and an object without internal ansendent.

external relaxation. It would therefore be of interest as a

[A4]

zero-order description of spin—lattice relaxation mechanisms, APPENDIX 2

in which the primary coupling of the spin with a specific lattice

mode, although weak compared to the Zeeman interaction, Influence of the 1,J, Term in H®
would still be stronger than the internal mechanisms trying to on Spin Polarization (I,)

restore the lattice equilibrium. Of course such lattice is not a ) )
true lattice according to the usual definition, and the mode”S mentioned aboved; (Eq. [9]) consists of two parts,

coupled relatively strongly to the spin may as well be classifiédiera @dHeis. Here COMmutes with, and therefore tends to
as a separate object. have a smaller effect on the spin polarizatidg) than H .

The effect byH.:s even vanishes completely, when it com
mutes withH . 4, @s shown in the following. Iffl ¢a, Hetrs] =

APPENDIX 1 0, we may write the average-Hamiltonian propagator as

Energy Conservation and the Time Dependence

. . U t) = e*iHeff,At/ﬁe*iHeff,Bt/ﬁ. A5
of the Hamiltonian (t) [AS]

Let us consider the complete spin—object Hamiltortign)  Thus, it follows for the spin polarizatiofi ;)
(Eq. [1]) with possible time dependence. We want to prove that
as a consequence of the principle of energy conservationy| ), = Tr{l,U(t)p(0)U (1)}
dH/dt = 0. Energy conservation in an isolated system requires

_ iHerat/fi| o —iHefst/fi o~ iHefatli iHeft atli
the expectation value of the Hamiltoniat(t) to be constant: = Trigel go-Menetie ensp(0) @<}, [A6]

where we used the property that the trace of a product of tw
d(H) dH dp operators stays the same when their order is change
——=Trip(t) o + Tr{H({t) =0. [A1] OP y _ _ IS chang
dt dt dt Tr{AB} = Tr{BA}. Since |, commutes withH s, it is in-
variant under the rotation
The derivative of the density operator is given by the Liou- . _
ville—von Neumann equation giftenst/] @ ~Henstlh — | [A7]
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Substitution of Eq. [A7] into [A6] then yields

6.

(Ioy = Tr{lge Maip(0)e Mot} [Ag]

There is thus no effect dfl 5 on the spin polarizatiokl ;).
APPENDIX 3

The Time-Dependent Expectation Value (cos(gtV'J,J_)),

Below we derive some general properties of the functiory
f(gt) = (cos(@tVJ.J )), (Eqg. [32b]). As mentioned below
Eq. [24], if, by assumption, the set of object energy levels ig.
nondegenerate, the matrix representationJod_ and J_J.
with respect to the object statg® is diagonal. Consequently
we may evaluaté( gt) from the trace with respect to the initial 11-

object density matriyp, as
12.

f(gt) = E Coigcnt)pn

n

[A9]
13.

with c, andp, the diagonal element®|J.J |n) and(n|po|n),
respectively. The general behavior predicted by Eq. [A9] ish
multiperiodic, whereby the terms witt), equal to O contribute

to stationary part of(gt), and the other terms are oscillatory 15
The trace o, equals 1, so thd( gt) equals 1 at = 0. Since

the diagonal elements of a density matrix are always positiveJ&
zero, p, > 0, the individual oscillatory terms in Eqg. [A9]
initially decay, causing an initial decreasef¢gt) sufficiently
close tot = 0. The value off(gt) can never be smaller than
—1. Beat patterns may arise owing to interference between the
different oscillatory terms. In principle, a full ectiggt) = 1  1s.
occurs at times when all oscillatory terms have the same phase
2k with, in general, a different integek for every term.
However, the more complex the relation between the frequel§-
cies, the longer the times between such echoes. In practice, for
complex multilevel systems one would expect a damped 03
cillatory decay off( gt) toward its final stationary value.

17.
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