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Zero-order average-Hamiltonian theory is used to extend the
product-operator description of coherent spin–spin cross-polariza-
tion to the case of a spin-1

2 coupled to a general object, like a
olecular rotor or a quantum oscillator. The object, which is not

ecessarily in a Boltzmann equilibrium state, is assumed to have
o interaction with the lattice and no internal relaxation capacity.
he Bloch–Wangsness–Redfield (BWR) theory for incoherent pro-
esses like spin–lattice relaxation does not apply for such an
solated spin–object pair. Nevertheless spectral density at the
armor frequency, of key importance in BWR theory, also plays a
entral role in object-induced spin polarization. Spectral density in
ur theory is represented by quantum operators J2 and J1. If J2

and J1 do not commute, the spin–object coupling may cause spin
olarization in an initially saturated spin system. This represents
coherent mechanism for spin cooling, which in specific cases may

ead to enhanced spin polarization above the thermal equilibrium
alue. A master equation is derived for general spin–object cross-
olarization, and applied to the case of a spin pair inside a uniaxial
otor, and a spin coupled to a microelectronic LC circuit. © 2000

Academic Press

Key Words: relaxation; rotation; oscillation; nuclear magnetic
resonance; coherent cross-polarization; spin-1

2.

INTRODUCTION

The low equilibrium polarization of nuclear spins in a m
netic field at ambient temperature has challenged num
investigators to enhance the spin polarization (1–6). A well-
nown and routinely applied technique in solid-state NM
ross-polarization (CP), whereby polarization is transfe
etween different nuclear spin species (1, 7). In general spin
ot only are coupled to other spins, but also interact with o
objects.” An example of such coupling to a nonspin obje
epresented by a spin in a spatially inhomogeneous mag
eld. In this case the spin is coupled to the source of
radient, e.g., a magnetic particle, through the position de
ence of the Zeeman interaction. As a result of this coup
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rradiation of the spin can lead to translational motion of
article, which is the basis of force-detected NMR spec
opy (8). A spin may also be coupled to the molecule
article, in which it resides, through the orientation depend
f the chemical shift, the quadrupolar interaction, or the dip
oupling. In magnetic resonance it is commonly assumed
onspin objects, like quantum oscillators and molecular ro
re intimately linked to the surroundings, so that their sta
ractically unaffected by the interaction with the spin. T

eads to incoherent spin–object processes, such as spin–
elaxation, which can be described in the theoretical fra
ork of Bloch, Wangsness, and Redfield (9, 10). As oppose

o the incoherence assumed in relaxation theories, in this a
e study thecoherentinteraction between a spin-1

2 coupled to
a general object. The object may, e.g., be another spin, a c
of spins, or a specific lattice mode, which is only wea
coupled to the other lattice modes. As a starting point we
the spin–object pair as isolated from its surroundings
neglect the possible occurrence of internal object relaxa
Furthermore we do not necessarily assume a Boltzmann
for the object.

The main question we want to answer is whether type
spin–object coupling other than spin–spin coupling can
used to enhance the spin polarization in a way similar to
spin–spin CP technique. From a semiclassical point of
many types of spin–object interactions can be regarde
contribute to the local magnetic field at the spin site. If
contribution has a transverse component and fluctuates
range of the Larmor frequency, the spin–object coupling
cause transitions between the spin states. The quest
whether these transitions lead to saturation or polarization
the one hand electromagnetic radiation, for instance, eq
affects the transition probability between the two spin stat
both directions and thus results in saturation. On the o
hand, if a spin system is in contact with a thermal bat
temperatureT, the spin state populations should reach va
given by the Boltzmann equation. Semiclassical relaxa
theory, in which the coupling with the lattice is represente
real functions, always leads to a steady state described
infinite temperature (9, 11). Such arguments, however, neg
the quantum character of the object coupled to the spin. W

chuit
-

-

1090-7807/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.



sp
f th

p
rap
tate
ola
l

q

as

I

be
his
t. T
bje

t
of

o b
d
O sib

bje
1)

tim
lly
ime

bje

w
e

w
H

w
t
utes

ar

by
ed
d
pin–

mil-
prior
r

a am
ver,

iven

]

g

s,
st
e to
een

244 MAGUSIN AND VEEMAN
sness and Bloch have presented a theory for incoherent
lattice interaction, which takes the quantum character o
lattice into account (9). Their theory is based on the assum
tions that the lattice has an infinite heat capacity and a
internal relaxation, so that it is always in a Boltzmann s
Below we present a theoretical framework for coherent p
ization exchange in an isolated pair of a spin-1

2 and a genera
uantum-mechanical object.

GENERAL THEORY OF CROSS-POLARIZATION

(a) Average Spin–Object Hamiltonian in the Interaction
Frame

The HamiltonianH of a spin-12 coupled to an object, such
another spin or an oscillator, consists of a spin partH I, an
object partHO, and an interaction partH I,O:

H 5 H I 1 H O 1 H I,O. [1]

n a magnetic field the spin part is given by

H I 5 2\v0II z, [2]

where v0I denotes the Larmor frequency. The unpertur
object HamiltonianHO needs no further specification at t
stage, except that it is assumed to be time-independen
termH I,O denotes the coupling between the spin and the o
and depends on the specific interaction involved. Since
operatorsI e 5 1

2 1, I x, I y, andI z represent a complete basis
spin-12 space, the general form ofH I,O is

H I,O 5 2\g~OxI x 1 OyI y 1 OzI z!, [3]

whereg is a real scalar reflecting the size of the coupling, t
efined more exactly below, and where the “coordinates”Ox,
y, andOz are operators in object space. Note that a pos

termOeI e can always be included into the definition ofHO. The
principle of energy conservation requires the total spin–o
Hamiltonian (Eq. [1]) to be time-independent (Appendix
Therefore, if H I and HO are assumed to be stationary,H I,O

should also be time-independent. Interactions, which are
dependent from a semiclassical perspective, can genera
translated into a quantum-physical form without explicit t
dependence.

The polarization exchange between the spin and the o
can be derived from the density operatorr in the interaction
frame,

r* ~t! 5 U~t!r* ~0!U 21~t!, [4]

hereby the propagatorU(t) should satisfy the Schro¨dinger
quation in the interaction frame
in–
e

-
id
.

r-
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dU
dt

5 2
i

\
H* ~t!U~t! [5]

ith boundary conditionU(0) 5 1. H*( t) is the coupling
amiltonian in the interaction frame,

H* ~t! 5 ei ~H I1H O!t/\H I,Oe2i ~H I1H O!t/\

5 2 1
2\g~I 1O*2~t!e2iv0It 1 I 2O*1~t!eiv0It 1 2I 0O*0~t!!,

[6]

here I 6 5 I x 6 i I y, I 0 5 I z, O*6(t) 5 TO(Ox 6 iOy)T 0
21,

andO*0(t) 5 TOOzTO
21 with TO 5 exp{iH Ot/\). We can spli

the spin–object coupling into a secular part which comm
with the unperturbed HamiltonianH I 1 HO and a nonsecul
part which is purely oscillatory in the interaction frame:

H* ~t! 5 H sec
I,O 1 ei ~H I1H O!t/\H nonsec

I,O e2i ~H I1H O!t/\. [7]

Solving the Schro¨dinger equation is generally complicated
the time dependence ofH*( t). The situation may be compar
to the specific case of spin–spin CP, whereH I,O is represente
by the heteronuclear dipolar coupling Hamiltonian. For s
spin CP the time-dependent nonsecular part ofH*( t) is com-
monly neglected. We intend to use a similar effective-Ha
tonian approach for the general spin–object case. Without
knowledge of the object HamiltonianHO and the object ope-

torsOk we cannot derive an expression for the secular H-
iltonian on the basis of their commutation properties. Howe
we may do so by using average-Hamiltonian theory (12), in
which the system evolves under an effective Hamiltonian g
by a series of terms

H 5 H ~0! 1 H ~1! 1 · · · [8a

with the zero-order term

H ~0!~t! 5
1

t E
0

t

H* ~t9!dt9

5 H sec
I,O 1

1

t E
0

t

ei ~H I1H O!t9/\H nonsec
I,O e2i ~H I1H O!t9/\dt9

[8b]

and higher-order termsH (n)(t), which in the weak-couplin
limit tend to be much smaller,iH (n)(t)i ! iH (0)(t)i. Since the
nonsecular part ofH*( t) consists of purely oscillatory term
H (0)(t) converges intoH sec on the timescale of the slowe
oscillation. Depending on the rate of convergence relativ
the size of the spin–object interaction we distinguish betw
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245SPIN–OBJECT CROSS-POLARIZATION
a slow and a fast limit. For both limits it makes sense to u
time-independent effective Hamiltonian of the form

Heff 5 2
\g

2
~I 1J2 1 I 2J1 1 2I 0J0!. [9]

n the slow limit the oscillations inH*( t) are extremely slow
n the timescale of the spin–object interactions,H*( t) '

H*(0). We maythen use an effective HamiltonianH eff equal to
H*(0), and theoperatorsJs (s 5 2, 0, 1) in Eq. [9] corre-
pond to the respectiveOs operators in Eq. [3]. In the fast lim

the nonsecular part ofH*( t) averages to zero before signific
ffects of the spin–object interaction arise. ThusH eff is repre-
ented by the remaining secular partH sec. The operatorsJs

follow from the limiting behavior form of the average Ham
tonianH (0)(t). For timest beyond a certain minimum timetmin,
say, one order of magnitude larger than the period of
slowest oscillation inH*( t), H (0)(t) becomes independent o
further increase int. Replacingt by the fixedtmin in Eq. [8b] we
obtain a time-independent expression for theJs operators

Js 5
1

tmin
E

0

tmin

O*s~t9!eisv0It9dt9. [10]

he operatorsJs may be compared to the spectral den
functions in relaxation theory. Between the slow and fast
there is the intermediate range, in which the frequency of s
oscillations inH*( t) is comparable to the size of the sp
object interaction. Then the effective-Hamiltonian descrip
is invalid, and other approaches based on, e.g., higher-
average-Hamiltonian theory (12) or Floquet theory (13) should

e employed. In addition we may encounter combined
nd fast limiting cases, whenH*( t) contains both slow and fa
scillating terms well separated in frequency. In the deriva
elow we will generally assume the fast limit, and employ
ecular Hamiltonian, or, equivalently, the zero-order ave
amiltonian (ZOAH) to calculate the behavior of the sp
bject system beyond a certain minimum timetmin associate

with the initial transient behavior ofH (0)(t) (Eq. [8b]). Some
authors have pointed out that there is generally an upper b
to the validity of average-Hamiltonian theory (14, 15), as well

full explanation thereof is beyond the scope of this art
ssuming the first-order termH (1)(t) to be next in importanc

however, we may expect that the zero-order propag
exp{2iH (0)t/\} starts to deviate significantly from the mo

ccurate first-order propagator exp{2i (H (0) 1 H (1))t/\},
when iH (1)it . \. This yields a roughly estimated upp
boundtmax 5 \/iH (1)i for the validity of a ZOAH approach

The Js operators correspond to quantum operators suc
position, momentum, charge, and current and are general
dimensionless. They can be made dimensionless by dividing
by the expectation valueJ 5=^J2J1 1 J1J2 1 J0

2& at t 5 0
a

e

y
it
e

n
er

w

n
e
e

nd

.

or

as
ot

em

(supposed to be nonzero), and at the same time multiplyg
by J. Such normalization has the advantage thatg reflects the
size of the interaction in frequency units, which is con
nient for checking the validity of the secular-Hamilton
approximation.

Specific commutator properties of theJs operators can b
derived from fact that the limiting formHsec of H(0) commute
with HO 1 HI. Insertion of a secular Hamiltonian of the form
Eq. [9] into the vanishing commutator [HO 1 HI, Hsec] yields

@H O, I 1J2 1 I 2J1 1 2I 0J0#

5 2@H I, I 1J2 1 I 2J1 1 2I 0J0#. [11]

plitting up the commutator term by term on the left-hand
f the equation, and using Eq. [2] and the spin–ope
ommutation rules on the right-hand side, we then have

I 1@H O, J2# 1 I 2@H O, J1# 1 2I 0@H
O, J0#

5 \v0II 1J2 2 \v0II 2J1. [12]

From the orthogonal properties of the spin operators (Tab
it thus follows

@H O, J0# 5 0 [13a]

@H O, J6# 5 7\v0IJ6. [13b]

Even without specifying the object involved, we thus kn
that the operatorsJ6 act as raising and lowering operat
which connect object states with energy separation of6\v0I.

H eff (Eq. [9]) may be divided intoH eff,A 5 2(\g/ 2)(I 1J2 1
I 1J2), on the one hand, andH eff,B 5 2\gI 0J0, on the other
H eff,A directly affects the spin polarization̂I 0& by causing
flip-flop transitions between the two spin states and pai
object levels separated by\v0I. By changing the magnetic fie
B0 we may match\v0 to the separation of specific obje
levels. BecauseH eff,B commutes withI 0, it only has a higher

TABLE 1
Product IaIb of the Spin-1

2 Operators Ia, Ib [ {2Ie, 2I0, I1, I2}

I a

I b

2I e 2I 0 I 1 I 2

2I e 5 S 1 0
0 1D 2I e 2I 0 I 1 I 2

2I 0 5 S 1 0
0 21D 2I 0 2I e I 1 2I 2

I1 5 S 0 1
0 0D I 1 2I 1 0 I e 1 I 0

I2 5 S 0 0
1 0D I 2 I 2 I e 2 I 0 0
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246 MAGUSIN AND VEEMAN
order polarization effect, which, as shown in Appendix 3, e
vanishes completely, whenH eff,A andH eff,B commute. In typica
ases, like the examples discussed in this paper,H eff,B vanishes
r commutes withH eff,A. For this reason we neglectH eff,B in the

following and assume an effective Hamiltonian of the fo
of H eff,A.

(b) Product-Operator Description of Object-Induced Spin
(De)polarization

In the previous section we showed that in the weak-cou
limit the spin–object system between certain time boundtmin

and tmax can be described by the zero-order average Ham-
nian H (0). The density operator can then be solved from
effective Liouville–von Neumann equation:

dr

dt
5 2

i

\
@H ~0!, r~t!#. [14]

ote that, although Eq. [14] cannot be used to calculater(t)
for t , tmin, we may nevertheless use it for integration fromt 5
0 in order to deriver(t) betweentmin and tmax. Since the
operatorsI e 5 1

2 1, I x, I y, andI z represent a complete basis
spin-12 space,r(t), like any operator in spin–object space,
be expanded as

r~t! 5 2I eRe~t! 1 2I 0R0~t! 1 I 1R2~t! 1 I 2R1~t!, [15]

here Re(t), R0(t), R1(t), and R2(t) are time-depende
operators in object space. Equation [15] implicitly defines
object operatorsRs(t) in such a manner that owing to the sp12
properties (Table 1) the expectation value of any spin ope
I s equals the trace ofRs(t) in object space:

^I s& t 5 Tr $Rs~t !%. [16]

ecause we wish to calculate the spin polarization^I 0& t, our
aim is to deriveR0(t) as a function of time. Substituting E
[15] and H (0) 5 2(\g/ 2) (I 1J2 1 I 2J1) into Eq. [14], and
taking the product properties of the spin operators (Tab
and their orthogonality into account, we find

R e
~1!~t! 5

ig

4
~@J1, R2~t!# 1 @J2, R1~t!#! [17a]

R 0
~1!~t! 5

ig

4
~2$J1, R2~t!% 1 $J2, R1~t!%! [17b]

R 1
~1!~t! 5

ig

2
~@J1, Re~t!# 1 $J1, R0~t!%! [17c]

R 2
~1!~t! 5

ig

2
~@J2, Re~t!# 2 $J2, R0~t!%! [17d]
n

g

o
n

e

or

1)

ith Rs 5 dRs/dt and curly braces denoting an anticomm-
tator {A, B} 5 AB 1 BA. Equation [17] shows howRe(t),
R0(t), R1(t), andR2(t) are coupled. Being most interested
the spin polarization̂I 0& t 5 Tr{ R0(t)}, we may obtain a new
set of equations with less coupled variables by differentia
Eqs. [17a] and [17b] once more, and replacing the resu
first-order derivatives on the right-hand side by use of
[17c] and [17d]. Adding and subtracting the two resul
second-order differential equations yield

RS
~2!~t! 5 2

g2

4
~J2J1RS~t! 2 2J2RD~t!J1 1 RS~t!J2J1!

[18a]

RD
~2!~t! 5 2

g2

4
~J1J2RD~t! 2 2J1RS~t!J2 1 RD~t!J1J2!,

[18b]

espectively, withRS(t) 5 { Re(t) 1 R0(t)}/ 2 and RD(t) 5
{ Re(t) 2 R0(t)}/ 2, and RS

(2)(t) and RD
(2)(t) the respectiv

econd-order time derivatives. Although simpler, Eq. [18
till difficult to solve, becauseJ1 and J2 do not generall

commute withRS(t) andRD(t). Fortunately, we do not need
know the exact solution {RS(t), RD(t)} in full detail to calcu-
late ^I 0& t 5 Tr{ R0(t)}. By subtracting Eqs. [18a] and [18
and taking the trace we obtain

d2Tr $R0~t!%

dt2 5 2g2Tr $J2J1RS~t! 2 J1J2RD~t!%,

[19]

here we used the property that the trace of an ope
roduct stays invariant under cyclic permutation, Tr{ABC} 5

Tr{ BCA} 5 Tr{ CAB}. Differentiating Eq. [19] twice with
respect to time followed by substitution of Eqs. [18a] and [1
and cyclic permutation of the operators within the trace
finds for the even-order derivatives

d2kTr $R0~t!%

dt2k 5 ~ig! 2k Tr $~J2J1! kRS~t!

2 ~J1J2! kRD~t!%.

[20]

The uneven-order derivatives may be obtained by differen
ing one step further,

d2k11Tr $R0~t!%

dt2k11 5 ~Ig! 2k Tr $~J2J1! kR S
~1!~t!

2 ~J1J2! kR D
~1!~t!%. [21]
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247SPIN–OBJECT CROSS-POLARIZATION
If, by assumption, there is no spin coherence att 5 0, ^I 6&0 5
0, then the initial density operator has the formr*(0) 5
2I eRe(0) 1 2I 0R0(0), and the uneven-order derivatives att 5
0, R0

(2n11)(0), vanish. Substituting the even-order derivati
into a Taylor expansion of̂I 0& t 5 Tr{ R0(t)} then yields the

ifference between two cosine series:

Tr $R0~t!% 5 Tr $cos~ gtÎJ2J1!RS~0!

2 cos~ gtÎJ1J2!RD~0!%. [22]

S,D(0) in Eq. [22] may be resubstituted by {Re(0) 6 R0(0)}/2.
he operators cos(gt=J2J1) and cos(gt=J1J2) have pure

object character. Now, for any pure object operatorQ it fol-
lows from the general form of the spin–object density ope
(Eq. [15]) and the orthogonality of the spin-1

2 operators (Tabl
1) that Tr{QRe(0)} and Tr{QR0(0)} respectively correspond
the expectation valueŝI eQ&0 5 1

2 ^Q&0 and ^I 0Q&0 at t 5 0.
To evaluate such an expectation value^I 0Q&0 further, we

assume that the initial density operatorr*(0) is the produc
rOr I of an object operatorrO and a spin operatorr I. In
the weak-coupling limit this is approximately the ca
when beforet 5 0 the spin and the object are in therm

quilibrium, r*(0) 5 exp{2b(H I 1 HO 1 H I,O)} '
xp{2bH I}exp{ 2bHO}. For suchr*(0) 5 rOr I the expecta-

ion value^I sQ&0 equals the product of the separate expecta
valueŝ I s&0^Q&0. Note that this represents an incoherent sta
the spin–object system att 5 0 only. At t 5 0 we perturb th
system, e.g., invert the spin polarization, and the coh
effect of the spin–object interaction may well be thatr*( t) can

o longer be factorized into an object and a spin part. Co
uently the equalitŷ I sO& t 5 ^I s& t^O& t does not general

hold for t . 0. This is a marked difference from incoher
elaxation theories, in whicĥO& t typically represents som

lattice variable behaving independently from the spin. Ma
the substitutions in Eq. [22]

Tr $R0~t!% 5 ^I 0& t [23a]

Tr $cos~ gtÎJ2J1!RS~0!%

5 ^cos~ gtÎJ2J1!&0~^I e&0 1 ^I 0&0!/ 2 [23b]

Tr $cos~ gtÎJ1J2!RD~0!%

5 ^cos~ gtÎJ1J2!&0~^I e&0 2 ^I 0&0!/ 2 [23c]

with ^I e& 5 1
2, we find that the spin polarization may

decomposed into two terms,

^I 0& t 5 ^I 0& t
pol 1 ^I 0& t

depol, [24a]

with

^I 0& t
pol 5 1

4 ^cos~ gtÎJ2J1! 2 cos~ gtÎJ1J2!&0 [24b]
s

r

,
l

n
of

nt

e-

t

g

^I 0& t
depol5 1

2 ^cos~ gtÎJ2J1! 1 cos~ gtÎJ1J2!&0^I 0&0. [24c]

he suffix 0 means that the expectation values of the t
ependent cosine operators and the spin operators are
valuated with respect to the density operatorr*(0) at t 5 0.
he polarization term̂I 0& t

pol is the spin polarization compone
induced by the object in the case of an initially saturated
system. The depolarization term̂I 0& t

depol shows what happe
to the initial spin polarization under the influence of the ob
^I 0& t

pol is nonzero only ifJ1 andJ2 do not commute. Objec
induced spin polarization thus requires the object to
significant quantum character. In the classical limitJ1 andJ2

become identical to their expectation values^J6& 5 j 6. Then
^I 0& t

pol vanishes, and̂I 0& t
depol equals cos(gt=j 1j 2). Due to the

normalizationJ 5 =^J2J1 1 J1J2& 5 1, this further reduce
to cos(gt/=2). As noticed above,J2 andJ1 are raising an
lowering operators, which connect object states separat
energy by\v0I. If we assume a nondegenerate set of ob
energy levels, the matrix representation ofJ1J2 andJ2J1 with
respect to the object states is diagonal. Evaluating the e
tation values of the cosine operators in Eq. [24] then invo
the diagonal elements of the initial object density matrix o
Any off-diagonal elements, reflecting coherences between
degenerate object states, are irrelevant for the object-ind
spin polarization. Moreover, not all diagonal elements ne
sarily play a role. Careful analysis shows that only the diag
elements associated with the object states separated b\v0I

and coupled by the spin–object interaction determine the
object polarization process.

(c) Object in a Boltzmann State

We now specify Eq. [24] for the case of an object initially
thermal equilibrium with its surroundings. This will genera
be the state of an object left alone sufficiently long be
establishing the coupling with the spin att 5 0. The expec
tation value of cos(gt=J2J1) with respect to a Boltzman
operator,rO 5 N exp(2bHO) with N 5 1/Tr{exp(2bHO)}
andb 5 1/kT, may be derived from the cosine Taylor se

^cos~ gtÎJ2J1!&0 5 1 1 N O
k51

` ~igt! 2k

2k!
Tr $~J2J1! ke2bH O

%.

[25]

Changing the product order of the operators within the trace
multiplying from the right with1 5 exp(bHO)exp(2bHO),
we obtain for the separate terms

Tr $~J2J1! ke2bH O
% 5 Tr $~J1J2! k21J1e2bH OJ2ebH O

e2bH O
%

[26]
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248 MAGUSIN AND VEEMAN
in which we recognize the imaginary rotation

e2bH OJ2ebH O
5 J2e2b\v0I [27]

as follows from the commutation property [HO, J2] 5 \v0IJ2.
Substitution of Eq. [27] into Eq. [26] yields

Tr $~J2J1! ke2bH O
% 5 Tr $~J1J2! ke2bH O

%e2b\v0I. [28]

Reinserting this into Eq. [25], we obtain

^cos~ gtÎJ2J1!&0 5 1 2 e2b\v0I

1 e2b\v0I^cos~ gtÎJ1J2!&0 [29]

hich may be substituted into Eqs. [24b] and [24c], yield

^I 0& t
pol 5 1

4 ~1 2 e2b\v0I!^1 2 cos~ gtÎJ1J2!&0 [30a]

^I 0& t
depol5 1

2 ^1 2 e2b\v0I 1 ~1 1 e2b\v0I!

3 cos~ gtÎJ1J2!&0^I 0&0. [30b]

o interpret Eq. [30] let us introduce the following paramet

^I 0&
T 5

1

2

1 2 e2b\v0I

1 1 e2b\v0I
[31a]

Nb 5
1 1 e2b\v0I

2
[31b]

with ^I 0&
T the equilibrium spin polarization at the initial obje

temperatureT, and Nb a temperature-dependent number-
ersely proportional to the occupation of the lowest spin s
ts value ranges from1

2 at 0 K to 1 in thehigh-temperature limi
ith these parameters substituted into Eq. [30], the equ

or the total spin polarization (Eq. [24a]) assumes a m
amiliar form,

^I 0& t 5 Nb^I 0&
T 1 ~1 2 Nb!^I 0&0

1 Nb~^I 0&0 2 ^I 0&
T! f~ gt! [32a]

ith

f~ gt! 5 ^cos~ gtÎJ1J2!&0. [32b]

hus, if the spin and object temperature are the same att 5 0,
the polarization flow from the object to the spin balances
flow in the opposite direction, and the spin polarization s
constant. This is similar to what one would expect for in
herent processes on the basis of thermodynamics. Indeed
is a close similarity in the high-temperature limit, whenNb '
,

e.

on
e

e
s
-
ere

1, between Eq. [32a] and the corresponding equation fo
ponential spin–lattice relaxation:

^I 0& t 5 ^I 0&
T 1 ~^I 0&0 2 ^I 0&

T!exp~2t/T1!. [32c]

pparently, in coherent spin–object processes the fun
( gt) has the role which the exponential decay has in s
attice relaxation. In Appendix 3 we show thatf( gt) is gener
ally multiperiodic with values between21 and 1 depending o
the number and occupation of the object eigenstates inv
in the spin–object cross-polarization. For multilevel syst
one may typically expect a damped oscillatory decay off( gt)
toward some final stationary value.

SPECIFIC EXAMPLES

(a) I Spin Coupled to an S Spin

To check the consistency of the general CP equation
[24]) with secular Hamiltonian theory for spin–spin CP
consider the case where the object is another spin S. I
basic spin–spin CP experiment resonant, linearly polarize
fields are simultaneously applied to both spins I and S.
simple example, also treated in the paper by Hartmann
Hahn (7), we consider a heteronuclear pair of spin-1

2 I and S
with scalar couplingJI zSz only. We assume perfect Hartman
Hahn matching and neglect off-resonance effects. The se
Hamiltonian in the tilted interaction frame is (7)

Hsec5 2
\J

4
~I 1S2 1 I 2S1!. [33]

Comparing Eq. [33] with Eq. [9], we see that the spin opera
S6 in the first equation correspond toJ6. The normalizatio
condition is also fulfilled, becauseS2S1 1 S1S2 5 2Se 5 1
(Table 1). We characterize the initial spin-locked state of t
spin by a spin temperatureT, and replacêI 0&

T in Eq. [32a] by
the initial S spin polarization̂S0&0. The calculation off( gt) in
Eq. [32b] is facilitated by the simple matrix representatio
the operatorJ1J2 5 S1S2:

S1S2 5 S1 0
0 0D [34]

(Table 1). The cosine operator in Eq. [32b] may thus
rewritten as

cos~1
2 JtÎS1S2! 5 1 1 S1S2cos~1

2 Jt! 2 S1S2. [35]

Using ^S1S2&0 5 (exp(2b\v0I) 1 1)21 5 (2Nb)21 and som
goniometrics we then obtain from Eq. [32a]
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249SPIN–OBJECT CROSS-POLARIZATION
^I 0& t 5 ^S0&0cos2~1
4 Jt! 1 ^I 0&0sin2~1

4 Jt! [36]

which is fully consistent with spin–spin CP theory (7).

(b) Spin-12 Pair Coupled to Rotational Motion

As a second example we discuss the case of a couple
pair inside a uniaxial rotor. The coupling between the rotor
the spin pair results from the orientation dependence o
dipolar interaction. In magic-angle-spinning (MAS) exp
ments rotational resonance occurs between coupled n
whose Larmor-frequency difference equals the rotation ra
multiples thereof (16). Because the Zeeman splitting of the t
spins are not exactly equal, it may seem that energy is
conserved in such process. To restore the energy ba
energy must be borrowed from, or lent to, the MAS rotor.
offset of the Hartmann–Hahn condition for dinuclear CP
MAS experiments by a multiple of the spinning rate as c
pared to the stationary condition (17) is caused by a compar

le mechanism. These rotor-induced effects on spin pair
sually described in a semiclassical way by treating the rot
macroscopic object. The purpose of the discussion bel

o present these effects as a specific case of spin–object
olarization between a fictitious spin-1

2 and a quantum rotor.
For a spin pair I and S inside a uniaxial rotor it is conven

to specify the orientation of the dipolar tensor by the E
anglesV 5 (a, b, g) in a coordinate system fixed to the ro
and the Euler anglesV0 5 (z, u, f) of this rotor-fixed frame i
the laboratory frame. Truncating the dipolar Hamiltonian a
the secular and the flip-flop term we may express the de
dence of the dipolar interaction on the rotation anglef as (12)

H D~t! 5 \vD O
k522

2

ckexp~ikf!T 20, [37a]

here vD 5 \m0g IgS/4pr 3; ck are specific complex facto
depending ona, b, andu (ucku , 1); and

T 20 5 I 0S0 2 1
4 ~I 1S2 1 I 2S1!. [37b]

Upon transformation into the so-called doubly rotating fra
(spin-pair interaction frame) the operatorT 20 becomes time
dependent,

T*20~t! 5 I 0S0 2 1
4 ~I 1

23e2iv23t 1 I 2
23eiv23t!, [38]

ith I 6
23 5 I 6S7 fictitious spin-12 operators (18) andv23 5 v0I 2

v0S the Larmor-frequency difference. BecauseI 0S0 commute
with I 6

23, I 0, and SO, it has no effect on the longitudin
polarization of the two spinŝI 0& and ^S0&, and may be ne-
glected (Appendix 2).
pin
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Quantum mechanically the factors exp(ikf) in Eq. [37a] ac
as raising and lowering operators

Rk 5 eikf 5 O
n50

`

un 1 k&^nu [39]

n the eigenstatesun& 5 exp(inf) of the unperturbed uniaxia
rotor Hamiltonian,

H rot 5 2
\ 2

2I

 2

f 2 [40]

with I the moment of intertia of the rotor. The correspond
nergy levels of the free uniaxial rotor areEn 5 \Bn2, with B

the rotational constant\/ 2I . For simplicity we do not tak
rotor driving and friction into account, so that the discus
strictly applies to free rotors with negligible friction at t
timescale of the dipolar interaction. A driving force may h
been employed to prepare the rotor in a specific initial state
it should be switched off att 5 0. Upon transformation int
the rotor–spin-pair interaction frame the operatorsRk 5 eikf in
HD (Eq. [37a]) become

R*k~t! 5 eiH rott/\eikfe2iH rott/\

5 O
n50

`

eiB~2kn1k 2!tun 1 k&^nu. [41]

ombining Eqs. [38] and [41] we may derive the zero-o
verage HamiltonianH (0) for rotor–spin-pair cross-polariz-

tion. Whenv23 matches the separation between two spe
rotor levelsEp andEq (q 2 p 5 1, 2), H (0) converges towar

H ~0! 5 2 1
4 \vD$cq2puq&^puI 1

23 1 cp2qup&^quI 2
23%, [42]

here we left out theI 0S0 term, and assumedv0I . v0S. There
can maximally be a single pair of rotor levels which satis
the matching conditionv 23 5 Eq 2 Ep. Equation [42] repre-
ents a Hamiltonian of the type as in Eq. [9], andJ1, J2, and

g in Eq. [9] can respectively be identified asup&^qu, uq&^pu, and
1
2 vDcpq with cpq 5 =cp2qcq2p. Calculating the expectatio
values of the corresponding cosine operators in Eq. [24] is
due to the simple matrix representation ofJ1J2 andJ2J1 with
only a single nonvanishing diagonal element (J1J2)pp 5 1 and
(J2J1)qq 5 1. For example, forJ2J1 5 uq&^qu we obtain
similarly to Eq. [35],

cos~1
2 vDcpqtÎuq&^qu! 5 1 1 uq&^qucos~1

2 vDcpqt! 2 uq&^qu

[43]
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250 MAGUSIN AND VEEMAN
and an analogous equation forup&^pu. Inserting Eq. [43] and it
analogue forup& into Eq. [24] yields

^I 0
23& t

pol 5 1
2 $1 2 cos~1

2 vDcpqt!%^Ppq&0 [44a]

^I 0
23& t

depol5 $1 2 ^Opq&0 1 ^Opq&0cos~1
2 vDcpqt!%^I 0

23&0 [44b]

with the rotor operatorsOpq andPpq defined as

Opq 5 1
2 ~uq&^qu 1 up&^pu! [45a]

Ppq 5 1
2 ~uq&^qu 2 up&^pu!. [45b]

he expectation values ofOpq and Ppq reflect the averag
occupation and the polarization of the pair of rotor statesup&
and uq&. In this respectOpq andPpq may be compared to th
spin-12 operatorsI e and I 0. Equation [44] describes an oscil-
ory polarization transfer back and forth between the rotor
he spin pair. In the specific case whenup& anduq& are the only
occupied rotor states,̂Opq& equals 1

2, and the polarizatio
exchange is similar to spin–spin cross-polarization (Eq. [
In general, however, other rotor states are occupied, as
which reduces the amplitude of the oscillatory polariza
exchange. Ifup& anduq& are not occupied at all, there is neit
a polarization transfer from the rotor to the spin, nor vice ve
The zero-quantum polarization̂I 0

23& then stays constant.
Equation [44] describes the development of zero-qua

polarization under a zero-order average HamiltonianH (0) de-
cribed by Eq. [42]. However, an important criterion for
alidity of the ZOAH approach is the timescale on whichH (0)

approaches its limiting form. In this respect we made a
tinction between a fast and a slow limit depending on the
of convergence relative to the size of the spin–object cou
(Eq. [9]). In the fast limit a ZOAH approach can be used,
in the slow limit we may treat the Hamiltonian in the inter
tion frame as stationary. To determine when the fast
applies for rotor–spin-pair cross-polarization, and when
slow limit applies, let us, e.g., consider the case in w
specific neighboring rotor levels (Ep, Ep11) differ by the
required amount\v23. Then, the separation of adjacent p
Ep21, Ep) and (Ep11, Ep12) equals\(v 23 2 \/I ) and\(v 23 1

\/I ), respectively. This determines the timescale,tmin ' I /\,
on which the average Hamiltonian converges into its limi
form. Thus, only a microscopic or molecular rotor can sa
the fast limit condition\/I @ vDucp2qu, if one assumes th
atter to be in the order of 102 Hz or larger. For macroscop
rotors, like MAS rotors, the convergence tends to be extre
slow, \/I ! vDucp2qu, and the slow limit applies.

In the microscopic regime the average Hamiltonian qui
converges into the limiting form described by Eq. [42], wh
leads to the above-derived polarization exchange accord
Eq. [44]. A macroscopic rotor spinning at a ratevr is charac-
terized by a narrow probability distribution over eigenstateun&
d

).
ll,

n
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with large quantum numbersn ' Iv r/\ and energy leve
almost equally interspaced by\B(2n 1 1) ' \v r. Hereby we
neglect energy differences in the order of\B with respect to
\vr. Within the subspaceS of occupied rotor states the rais
and lowering rotor operatorsR*k(t) are approximately given b
Eq. [41])

R*k~t! < eikvrt O
un&[S

un 1 k&^nu < eikvrteikf, [46]

whereby we assume the properties ofeikf outside subspaceS to
be negligible for the behavior of the macroscopic rotor. T
time-dependent behavior of the rotor raising and lowe
operators may be compared to the operators in the theo
Boenderet al. (19). Insertion of Eq. [46] into Eq. [44] fo
v 23 5 kv r yields a periodic Hamiltonian with frequencyvr.

mitting the uninterestingI 0S0 term we obtain, e.g., fork 5 1
the average Hamiltonian

H ~0! 5 2 1
4 vD$c1e

ifI 1
23 1 c21e

2ifI 2
23%. [47]

hen the size of the dipolar interaction is small compare
he frequency of the rotor,vD ! vr, the zero-order avera
Hamiltonian can be used to calculate the spin polariza
Strictly this represents a case of a combined fast and slow
because, on the one hand, we neglect the Hamiltonian
oscillating with frequencyvr @ vD, and, the other hand, w
treat the remaining terms oscillating with frequencies; \/I !
vD as stationary. For intermediate MAS rates (vr ' vD), or
“submacroscopic” rotors (\/I ' vD), the evolution of th
system can no longer be described with an effective Ham
nian of the form of Eq. [47], and a more refined method,
instance, based on Floquet theory must be used (13). Compar
ng Eq. [47] with Eq. [9] one sees that the operatorse6if for
spin–rotor coupling correspond to the operatorsJ7 for the

eneral spin–object case. Thus we may insertJ7 5 e6if into
q. [24] to derive the polarization̂I 0

23& as a function of time
Because the operatorseif ande2if commute, the polarizatio
term ^I 0

23&pol vanishes and only initial depolarization occurs

^I 0
23& t

depol5 cos~1
2 vDcpqt!^I 0

23&0. [48]

Since I 0
14 5 I 0 1 S0 commutes withH# D (Eq. [47]), the tota

spin polarization̂ I 0
14& 5 ^I 0& 1 ^S0& is conserved. Combine

with the oscillatory character of^I 0
23& 5 ^I 0& 2 ^S0& this results

n a periodic polarization exchange between spins I an
hereby the rotor supplies or absorbs the required en
ecause spinning rates of macroscopic rotors typically a

he range 103–105 Hz, rotary resonance will usually be
homonuclear process between like spins. Molecules may
much faster and thereby cause rotary resonance within
eronuclear pair of dipolarly coupled spins. For such case
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251SPIN–OBJECT CROSS-POLARIZATION
two-level description may be valid and equations like E
[44a] and [44b] can be used to calculate the polariza
exchange.

(c) Spin-12 Coupled to a Harmonic Oscillator

We now turn to the case of a one-dimensional oscil
coupled to a spin-1

2 in a strong magnetic field. As formechan
ical oscillation this may, e.g., be a spin mounted on an o
lating device in a magnetic field gradient. One may fur
think of a spin in a molecule coupled to torsional vibrati
through the anisotropic chemical shift or dipolar interac
with other spins in the molecule. The oscillator may also b
an electronicnature. For example, anLC circuit can be cou
pled to a spin through the magnetic field raised by the co
familiar example is the detection circuit of a NMR pro
Tuned to the spins inside the detection coil, the circuit and
spins can exchange heat. In principle, this could lead t
enhanced spin polarization in cryogenic NMR probe head
which the electronic parts are cooled to liquid helium tem
ature. However, the heat exchange between a spin-1

2 and such
macroscopic circuit would be slow, as compared to the lo
tudinal spin relaxation. The question addressed in this se
is whether specific microscopic electronic devices pres
available through microelectronic technology can be use
cool the spins at the timescale of seconds, at least in theo
principle, the spin–oscillator system may be regarded
special case of Feynman’s theory for a general system co
to a harmonic oscillator (20). Shirley’s discussion of an ato
interacting with a quantized field (as a physical interpreta
of Floquet theory) is also related (21). The purpose of discus
ng the spin–oscillator case below is simply to illustrate
pplication of the above-derived general equations (Eqs.
nd [32]) to some specific nonfamiliar case in NMR spec
opy.
The unperturbed Hamiltonian of a one-dimensional
onic oscillator is (22)

H OS 5 1
2 \vOS~A1A2 1 A2A1!, [49]

ith A1 and A2 the raising and lowering operators, resp-
tively, acting on the oscillator eigenstatesun& with energyEn 5
(n 1 1

2)\v os. For example, for an electronic circuit consist
of an inductorL coil and a capacitorC with resonance fre
quency vos 5 1/=LC the operatorsA6 are related to th
apacitor chargeq and the coil currenti as (23)

A6 5 Î 1
2 L

\vOS
~vOSq 7 i i ! [50]

with the voltage operatoru in the paper referred to replaced
he charge operatorq 5 Cu in ours).

Let us consider a microscopic NMR detection coil clos
.
n
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il-
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material surface with the coil axis perpendicular to
urface and the external magnetic field (Fig. 1). Combined
capacitor the coil forms a resonant circuit, which is tune

he Larmor frequency of the spins to be observed. The cou
etween the oscillator and a spin located on the coil ax
aused by the magnetic fieldB1 produced by the coil, which,

turn, is proportional to the currenti in the oscillator. This give
rise to a spin–oscillator coupling Hamiltonian of the form

H I,OS 5 2\GiI x, [51]

where G 5 g IdB1/di is determined by parameters like
shape and diameter of the coil, and the distance of the
from the coil center. After substituting the operatorsI 6 andA6

into Eq. [51] we use the commutator properties [H I, I 6] 5
7\v0II 6 and [HOS, A6] 5 6\vOSA6 to transformH I,OS into
the spin–oscillator interaction frame. If the oscillator
quency matches the spin Larmor frequency,vOS 5 v0I, we
obtain a monoperiodic HamiltonianH*( t) with frequency 2v0I

and time-independent partH sec:

Hsec5 2
i

4
\GÎ\vOS

1
2 L

~A1I 1 2 A2I 2!. [52]

Comparison with Eq. [9] combined with the normalizat
=^J2J1 1 J1J2& 5 1 and the requirement of a real-valueg
shows thatJ6 corresponds to7i=\vOS/ 2^HOS& A7 andg to
Gi 0/(23 =2) with i 0 5 =2^HOS&/L. In the macroscop
limit i 0 corresponds to the current amplitude, as follows f
the classical equation for the oscillator energyE 5 1

2 Li 0
2, and

g 5 Gi 0/=2 to the effective size of the spin–oscillator c-
pling (rad/s). Since the nonsecular terms ofH*( t) oscillate
with frequency 2v0I, the validity of the zero-order Hamiltonia
approach requiresg ! 2v 0I.

To calculate the effect of an oscillator in a Boltzmann s
on the spin polarization we replaceJ1J2 in Eq. [32b] by
(1

2 \vOS/^H
OS&)A2A1. This, in turn, may be rewritten by use

Eq. [49] and the commutator [A2, A1] 5 1 as (HOS 1
1
2 \vOS1)/ 2^HOS&. In the high-temperature limit,\vOS ! ^HOS&

FIG. 1. Sketch of the microelectronic NMR imaging setup discusse
the body of text as a potential application of oscillator–spin cross-polariz
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252 MAGUSIN AND VEEMAN
5 kT, the operator12\vOS1 can be neglected with respect
OS. Setting ^I 0&0 5 0 in Eq. [32] yields for the oscillato

nduced polarization̂I 0& t
pol of an initially saturated spin

^I 0& t
pol 5 Nb^I 0&

T 2 Nb^I 0&
Tf~ gt!

< ^I 0&
TK1 2 cosS gt

Î2^H OS&
ÎH OSDL

0

, [53]

where we used the high-temperature approximationNb 5
{exp(2b\vOS) 1 1}/2 ' 1. This can be expanded as

^I 0& t
pol 5 2^I 0&

T O
n51

` ~igt/Î2! 2n

2n! ^H OS& n ^~H OS! n&0. [54]

For \vOS ! kT, the expectation valueŝ (HOS) n& 0 5
Tr{( HOS) nexp(2bHOS)}/Tr{exp( 2bHOS)} can be approxi-
mately calculated from continuous integrals, yielding

^~H OS! n&0 5 ^H OS& 0
n E

0

`

xne2xdx

5 2^H OS& 0
n E

0

`

y2ne2y 2
yd y [55]

with x andy as convenient integration variables related byx 5
2. Resubstituting this into Eq. [54], we obtain

^I 0& t
pol 5 ^I 0&

T^1 2 2E
0

`

cos~ gty/Î2!e2y 2
yd y&0.

[56]

Thus^I 0& t
pol can be calculated as the cosine Fourier transfor

y exp(2y2) (Fig. 2). Starting from 0 att 5 0, it has a
maximum of 130% atGi 0t 5 6 (determined graphically) an
finally approaches the end level, where the spin temper
equals the initial oscillator temperature. This behavior ma

FIG. 2. Relative polarization of a spin-1
2 coupled to a harmonic oscillat

as a function of contact time, when there is no spin polarization att 5 0 and
the oscillator starts from a thermal-equilibrium state characterized by a
peratureT.
of

re
e

compared to incoherent spin–lattice relaxation. As for ach
ing the highest possible polarization enhancement there ar
opposite effects of the initial oscillator temperature on
polarization. On the one hand, one should cool down
oscillator to a temperature as low as possible for the hig
final polarization level. On the other hand, cooling down
oscillator also reduces its thermal-current amplitudei 0, and
thereby the polarization transfer rateg/=2 5 1

2 Gi 0. In prac-
ice there will always be some spin–lattice relaxation, w
ill counteract spin cooling below the lattice temperat
ecause the oscillator energy in thermal equilibrium at a g

emperatureT equals1
2 Li 0

2 5 kT, decreasing the coil indu-
anceL speeds up the polarization process.

As an example, let us discuss the possible use of a m
scopic NMR probe to enhance the polarization of31P nuclei a
the surface of specific materials (Fig. 1). As the detection
we take the microscopic pickup loop of a fully integra
magnetometer recently developed by Kirtleyet al. (24). The
pickup loop is an octagon 10mm across with a 1.2-mm line-

idth. Integrated with a 20-mm-long section of coplanar le
structure the system has an inductanceL ' 100 pH. We ad

capacitanceC 5 10 nF to change the loop system into
electronic oscillator with resonance frequencyv 0/ 2p 5
(2p=LC)21 5 159 MHz. This corresponds to the Larm
frequency of31P nuclei in a magnetic field of 9.3 T. In therm
equilibrium the energy stored in our 159-MHz oscillato
1
2 Li 0

2 5 kT. For example, at 10 K the amplitudei 0 of the
thermal current thus equals 1.7mA.

The coupling between the oscillator and a spin in the su
is represented by the magnetic field produced by the
According to classical electromagnetic theory (25), the mag
netic field along the coil axis caused by a currenti is

B1 5 m0

r 2

~r 2 1 d2! 3/ 2 i , [57]

herer denotes the radius of the coil,d denotes the distan
rom the coil center, and the finite wire thickness of the loo
eglected. For a loop–surface distance equal to the loop r

he coupling gradientG 5 g IdB1/di 5 g Im 0/r=8. With r 5
mm, i 0 5 1.7 mA at 10 K, andg I 5 10.83 107 rad/Ts for

e.g., 31P, the polarization transfer rateg/=2 5 1
2 Gi 0 thus

equals 2p 3 1.3 rad/s. This value is much smaller than
armor frequency, which justifies the use of only the statio
art ofH*( t) (Eq. [52]) over a large time interval. Thus, wh

he electronic oscillator at 10 K is brought into contact wi
aturated31P nucleus at a distance of 5mm, the spin will coo

down to this temperature in a few seconds. Theoretically
is even a transient polarization overshoot corresponding
spin temperature of 7.8 K att 5 0.7 s. This polarizatio
maximum equals the room temperature31P polarization at
hypothetical field of ca. 360 T.

m-
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CONCLUSION

Using a zero-order average-Hamiltonian approach we
given a product-operator description of the effect whic
general object has on the polarization of the spin to which
coupled. The spectral density operatorsJ2 andJ1 reflecting the
uctuations of the coupling Hamiltonian in the interact
rame at the Larmor or nutation frequency play a key role in
olarization transfer. An increase of the spin polarization
nly occur ifJ2 andJ1 do not commute. Object-induced “sp

cooling” is therefore a typical quantum effect. The more
nounced the quantum character of the object, the highe
resulting spin polarization or the faster the polarization
cess. In the classical limitJ2 andJ1 reduce to their respecti
expectation values, which yields (initial) depolarization. Sp
object cross-polarization critically depends on the occup
of the object levels concerned. Generalizing the outcom
the example of a molecular rotor coupled to a spin pair
conclude that pairs of object levels, even those with the
quired energy separation\v0 and connected by the spin–obj
interaction, do not contribute to spin polarization or depo
ization unless they are occupied. This may be compared
BWR theory, which states that spin–lattice relaxation requ
spectral density at the Larmor frequency. Spin cooling req
the object-level pairs to be polarized, i.e., unequally popul
The general CP theory presented in this article is derived f
isolated pair of a spin and an object without internal
external relaxation. It would therefore be of interest a
zero-order description of spin–lattice relaxation mechani
in which the primary coupling of the spin with a specific lat
mode, although weak compared to the Zeeman intera
would still be stronger than the internal mechanisms tryin
restore the lattice equilibrium. Of course such lattice is n
true lattice according to the usual definition, and the m
coupled relatively strongly to the spin may as well be class
as a separate object.

APPENDIX 1

Energy Conservation and the Time Dependence
of the Hamiltonian

Let us consider the complete spin–object HamiltonianH(t)
(Eq. [1]) with possible time dependence. We want to prove
as a consequence of the principle of energy conserva
dH/dt 5 0. Energy conservation in an isolated system req
the expectation value of the HamiltonianH(t) to be constan

d^H&

dt
5 TrHr~t!

dH

dt J 1 TrHH~t!
dr

dtJ 5 0. [A1]

The derivative of the density operator is given by the L
ville–von Neumann equation
ve
a
is

e
y
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he
-

–
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or
e
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ith
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es
d.
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d
a
s,
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o
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e
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s

-

dr

dt
5 2

i

\
@H~t!, r~t!#. [A2]

nsertion into Eq. [A1] yields

TrHr~t!
dH

dt J 2
i

\
Tr $H 2~t!r~t!%

1
i

\
Tr $H~t!r~t! H~t!% 5 0. [A3]

he trace of an operator product is invariant under a c
ermutation Tr{ABC} 5 Tr{ CAB}. It thus follows that the

ast two terms on the right-hand side of Eq. [A3] cancel e
ther. Consequently we have

KdH

dt
L 5 TrHr~t!

dH

dt J 5 0. [A4]

Equation [A4] only proves that the expectation value^dH/dt&
vanishes, not the operatordH/dt itself. However, the principl
of energy conservation is valid irrespective of the state o
spin–object system, and thus for all possible density oper
r(t). This can only be satisfied ifdH/dt itself equals zero
Consequently energy conservation requiresH to be time inde
pendent.

APPENDIX 2

Influence of the I0J0 Term in H(0)

on Spin Polarization ^I0&

As mentioned aboveH eff (Eq. [9]) consists of two part
H eff,A andH eff,B. H eff,B commutes withI 0 and therefore tends
have a smaller effect on the spin polarization^I 0& thanH eff,A.
The effect byH eff,B even vanishes completely, when it co-
mutes withH eff,A, as shown in the following. If [H eff,A, H eff,B] 5
0, we may write the average-Hamiltonian propagator as

U~t! 5 e2iHeff,At/\e2iHeff,Bt/\. [A5]

Thus, it follows for the spin polarization̂I 0&

^I 0& t 5 Tr $I 0U~t!r~0!U 21~t!%

5 Tr $eiHeff,Bt/\I 0e
2iHeff,Bt/\e2iHeff,At/\r~0!eiHeff,At/\%, [A6]

here we used the property that the trace of a product o
perators stays the same when their order is cha
r{ AB} 5 Tr{ BA}. Since I 0 commutes withH eff,B, it is in-

variant under the rotation

eiHeff,Bt/\I 0e
2iHeff,Bt/\ 5 I 0. [A7]
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Substitution of Eq. [A7] into [A6] then yields

^I 0& t 5 Tr $I 0e
2iHeff,At/\r~0!e2iHeff,At/\%. [A8]

There is thus no effect ofH eff,B on the spin polarization̂I 0&.

APPENDIX 3

The Time-Dependent Expectation Value ^cos(gt=J1J2)&0

Below we derive some general properties of the func
f( gt) 5 ^cos(gt=J1J2)&0 (Eq. [32b]). As mentioned belo
Eq. [24], if, by assumption, the set of object energy leve
nondegenerate, the matrix representation ofJ1J2 and J2J1

with respect to the object statesun& is diagonal. Consequen
we may evaluatef( gt) from the trace with respect to the init
object density matrixrO as

f~ gt! 5 O
n

cos~ gcnt!rn [A9]

with cn andr n the diagonal elementŝnuJ1J2un& and^nurOun&,
espectively. The general behavior predicted by Eq. [A9
ultiperiodic, whereby the terms withcn equal to 0 contribut

to stationary part off( gt), and the other terms are oscillato
The trace ofrO equals 1, so thatf( gt) equals 1 att 5 0. Since
the diagonal elements of a density matrix are always positi
zero, r n . 0, the individual oscillatory terms in Eq. [A
initially decay, causing an initial decrease off( gt) sufficiently
close tot 5 0. The value off( gt) can never be smaller th
21. Beat patterns may arise owing to interference betwee
different oscillatory terms. In principle, a full echof( gt) 5 1
occurs at times when all oscillatory terms have the same p
2kp with, in general, a different integerk for every term
However, the more complex the relation between the freq
cies, the longer the times between such echoes. In practic
complex multilevel systems one would expect a damped
cillatory decay off( gt) toward its final stationary value.
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